首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据几个低光度射电星系中的射电喷流的观测特性及内部物理条件,讨论了相对论电子的再加速,假定加速机制为费米型,我们得到射电喷流内的加速系数为~10~(-15)秒~(-1),从而可以较好地解释喷流的射电亮度分布和频谱特性。进一步讨论了磁流体力学湍流提供加速的可能性,并表明湍流的能谱指数应限制在窄的范围内(v~1.6—1.7)。  相似文献   

2.
基于我国的太阳射电宽带频谱仪(0.625~7.600GHz)在2003年10月22日~11月3日观测到8个伴生日冕物质抛射(CME)的太阳射电爆发,结合Nobeyama Radio Polarimeter(NORP)的单频观测、Nobeyama Radioheliograph (NORH)、Siberian Solar Radio Telescope(SSRT)的成像观测以及Culgoora和WAVE/WIND的低频射电频谱观测,对8个射电爆发的射电辐射特征进行了初步分析.试图从中寻找与CME伴生的射电爆发的特征。  相似文献   

3.
太阳射电IV型爆发U形谱的产生机制   总被引:2,自引:0,他引:2  
本文提出了质子耀斑爆发相期间太阳射电Ⅳ型爆发U形谱的形成机制:U形谱系由Ⅳ_μ塑爆发频谱和Ⅳ_dm型爆发频谱两部分组成,舞一爆发的频谱是由非热电子(l00keV2McV)的迥转-同步加速辐射和热电子的迥转共振吸收所产生;这种非热电子,与质子是在爆发相期间同时受到加速的。在取爆发源体积为圆柱体的近似下,对1972年8月7日的Ⅳ_μ型爆发和Ⅳ_dm型爆发的射电流量密度进行了数值计算,计算结果同观测结果比较符合。从Ⅳ_μ型爆发到Ⅳ_dm型爆发的偏振旋向反转是由于两个源中磁力线的反向平行所引起的。文中还讨论子Ⅳ型爆发U形谱同质子事件之间的关系。  相似文献   

4.
在本文中我们给出了对M87的宽波束的射电观测结果。结合Ceccareli等人对室女座的红外观测资料(1982),我们论证了,为了便于统一解释射电及红外的观测资料,在M87的周围除了一个高温的晕(~10~8K)外,还可能存在一个微温的延伸晕(~10~5K)。这个微温的晕将会造成M87和高温晕的引力封闭。  相似文献   

5.
本文给出了1987年9月23日云南日偏食射电多波段观测结果。 1.取得了太阳活动低年射电太阳半径:在8.2厘米、10.6厘米、21.1厘米三波段分别为1.060、1.068和1.083r⊙。 2.暗条N—2上空射电源被观测到:它们在三波段立体角范围分别是0.4~1.0×10~(-8)Sr,1.2~2.0×10~(-8)Sr,4.2×10~(-8)Sr;平均亮温度分别在1.0~1.2×10~6K,1.7~2.4×10~6K,3.4×10~6K。 3.观测到日珥E—1上空射电源:立体角范围在三波段分别为0.4×10~(-8)Sr,0.3×10~(-8)Sr,0.8×10~(-8)Sr。是热源,平均亮温度分别为3.0×10~6K,5.3×10~6K,8.0×10~6K。 4.谱斑上空射电源观测到3个,三波段立体角分别为0.8~1.3×10~(-8)Sr,0.8~1.8×10~(-8)Sr,1.6~6.0×10~(-8)Sr。全是热源,平均亮温度分别为0.7~0.8×10~6K,1.0~1.1×10~6K,1.0~2.8×10~6K。晕的辐射标度分别为8.0×10~(28)电子数~2/厘米~5,6.7×10~(28)电子数~2/厘米~5,3.7×10~(28)电子数~2/厘米~5。 5.在日面西北边缘100°~115°范围内观测到日冕凝聚区,它的立体角范围在三波段分别是0.3~0.7×10~(-8)Sr,0.6×10~(-8)Sr,1.3×10~(-8)Sr。是热源,平均亮温度在三波段分别为0.8~1.6×10~6K,5.4×10~6K,7.4×10~6K。它的延伸高度在三波段分别为2.10×10~4km,3.53×10~4km,4.72×1  相似文献   

6.
介绍云南天文台太阳射电米波 (2 30~ 30 0MHz)、分米波 (0 .7~0 .4GHz)频谱观测系统及 1 0m射电望远镜自动控制系统“星型拓扑”对等网的建立。通过该网络 ,不但实现了光盘刻录机、激光打印机等资源共享 ,而且还为解决由于太阳射电频谱高时间分辨率和高频率分辨率观测带来的大数据量处理和存储找到了解决途径  相似文献   

7.
云南天文台高分辨率射电频谱仪观测到10毫秒级变周期振荡,带宽约10MHz,叠加在一个持续时间约500ms的射电频谱上.在德国Weissenau的太阳射电频谱记录上找到了对应的爆发;同时SESC(美国空间环境服务中心)发表了同一时刻获得的245MHz总强度射电爆发记录;还在日面城到了相应的H_α亮点.  相似文献   

8.
基于云南天文台射电频谱仪的频率设置,第23 周太阳峰年期,我们作了下列观测研究选题:(1) 质子耀斑的初始能量释放过程及粒子加速研究。(2) 通过微波———分米波运动Ⅳ型爆发观测,开展日冕物质抛射研究。(3) 射电快速精细结构及微耀斑研究。(4) 通过频谱观测发展日冕磁场的诊断方法、反演磁场的拓朴结构。(5) 开展太阳灾变事件中的射电先兆研究,为日地空间环境警报提供射电观测依据  相似文献   

9.
定标是射电天文观测中基础而重要的工作.定标工作可以得到太阳观测中的一个重要物理量:太阳射电辐射流量,可以扣除射电频谱仪的通道不均匀性,清晰显示射电频谱特征.结合紫金山天文台射电频谱仪的观测数据,详细介绍了定标的基本方法,分析了定标常数的变化情况,最后给出了定标结果,并与野边山射电偏振计以及RHESSI(The Reuven Ramaty High Energy Solar Spectroscopic Imager)卫星硬X射线波段的几个太阳耀斑的观测结果进行了比较,结果符合耀斑的光变特征.其中对一个耀斑脉冲相硬X射线流量和微波光变的相关性的分析表明这些观测可以用来研究有关的辐射机制以及相应的能量释放和粒子加速过程.  相似文献   

10.
Ⅱ型射电暴是日冕物质抛射(Coronal Mass Ejections, CME)的最佳示踪器,当日冕物质抛射的速度超过本地阿尔芬速度时,会产生日冕激波或行星际激波,并对地球的磁层产生十分剧烈的影响,在射电波段观测到Ⅱ型射电暴也就意味着观测到了日冕激波,预测激波到达地球的时间,是空间天气预报的重要内容之一。2021年9月28日06:20 UT左右,奇台低频射电阵列(Qitai Low-Frequency Radio Array, Qitai LFRA)首次探测到一次Ⅱ型射电暴爆发事件,频率覆盖范围为18~50 MHz,持续时间10多分钟。由于在极低频(<40 MHz)频段还没有进行过具有有效空间分辨率的观测,未来在这个频段发现未知现象的可能性极大。观测结果表明,奇台低频射电阵列性能良好(增益典型值6 dBi)、灵敏度高(-78 dBm/125 kHz,动态范围72 dB),可以在25周太阳活动峰年发挥独特作用。  相似文献   

11.
本文对太阳射电精细结构这一领域进行了较为详尽深入的调研 ,发现由于观测仪器技术指标 (时间、频率、频率覆盖、偏振、灵敏度等 )相对不高 ,有很多的精细结构 ,在时间上、在频率上并没有被完全分解开来 ,或是没有被检测到。对FFS的研究 ,还处于发现 -认识 -逐步深化的阶段。观测资料还很单薄。在微波高端 (厘米波段 ) ,精细结构的观测资料更是很少。另外 ,对FFS也只是有一个侧重频谱形态的分类。本文利用我国的“太阳射电宽带快速频谱仪”的观测资料 ,几年来 ,对微波频段的射电快速精细结构进行了较为深入的研究。主要研究结果有 :发现了弱偏振微波尖峰辐射中两个偏振分量之间的时间延迟和偏振反转现象 ;首次发现了微波 (短分米波段 )高偏振U型爆发并给出解释 ;首次发现了厘米波N型和M型爆发并给出解释 ;首次发现了高偏振微波斑点并给出解释 ;首次利用甚高频率分辨率频谱仪 ,通过对大样本的分米波尖峰辐射的统计 ,给出了更为可靠的、更小的相对带宽的下限 ;结合高空间分辨率的观测资料 ,对运动Ⅳ型爆发及其伴生的精细结构作了探讨 ;对双向电子束的起源及其加速位置进行了研究  相似文献   

12.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

13.
一九七九年八月间,中科院上海硅酸盐研究所二室与云南天文台射电室合作在昆明进行了国内首次声光型射电频谱仪实验。实验旨在探索利用国产声光器件进行太阳射电动态频谱观测的性能、为建立太阳射电频谱观测准备条件。并为进一步发展星际谱线观测手段摸索经验。 本文详细地叙述了实验的构思,进行情况及一些初步的结果分析。讨论了存在的问题及解决的意见。  相似文献   

14.
射频干扰是射电天文观测设备无法回避的问题。国家天文台(内蒙古)明安图观测基地多台各具特色的射电观测设备、各类电磁辐射源及其传播路径共同组成了复杂的电磁环境。现有超宽带高分辨太阳射电成像观测设备——明安图射电频谱日像仪,以及即将建设的子午二期工程的太阳行星际监测系统,包括米波-十米波射电日像仪、行星际闪烁望远镜和超宽带射电频谱仪等,全部频率覆盖1 MHz~15 GHz,观测结果用于太阳物理、空间天气监测和预报的关键问题研究,也对电磁环境提出了更高要求。介绍了明安图观测基地的观测设备及其地理环境,给出了方位频率功率谱、立体方向图、时间频率功率谱等射频干扰的初步监测结果,讨论了射频干扰预防、消减及射频干扰自监测方案。  相似文献   

15.
基于亚毫米波阵列(Submillimeter Array, SMA)的1 mm波长的长时间监测数据,利用贝叶斯分层模型对耀变体的光变曲线进行拟合,估算了155个耀变体的射电亮温度和光变多普勒因子。利用Wilcoxon秩和检验,比较了蝎虎座BL型天体(BL Lac)子样本和平谱射电类星体(Flat Spectrum Radio Quasar, FSRQ)子样本的亮温度和多普勒因子分布,也比较了费米耀变体和非费米耀变体的亮温度和多普勒因子分布。结果表明:(1)相对蝎虎座BL型天体,平谱射电类星体平均具有更高的多普勒因子;(2)相对非费米耀变体,费米耀变体平均具有更高的亮温度和多普勒因子。通过与15 GHz波段的亮温度和多普勒因子进行比较发现,射电亮温度和多普勒因子可能有向更高频率降低的趋势。  相似文献   

16.
基于云南天文台射频谱仪的频率设置,第23周太阳峰年期,我们作了下列观测研究选题;(1)质子耀斑的初始能量释放过程及粒子加速研究。(2)通过微波-分米波运动Ⅳ型爆发观测,开展日冕物质抛射研究。(3)射电快速精细结构及微耀斑研究。(4)通过频谱观测发展日冕磁场的诊断方法、反演磁场的拓扑结构。(5)开展太阳突变事件中的射电先兆研究,为日地空间环境警报提供射电观测依据。  相似文献   

17.
本文提出一个持续供能的喷流—激波模型来解释视超光速射电节点频谱演化的普遍特性.理论计算指出,射电爆发频谱的反转频率νm和频谱极大流量Sm之间的关系具有典型的3阶段演化方式,并且与类星体3C345中观测到的视超光速节点C4的演化行为相当好地符合.令Sm∝ν,则在上升阶段ζ≤3;在平坦变化阶段ζ≈0,而在衰减阶段ζ≈1.爆发幅度和流量极大的迟后时间对频率的关系△Smax(ν)和△t(ν),都具有Blazar天体中观测到的射电爆发的普遍形式.本文提出的激波模型,考虑到驱动气体的持续注入和激波后等离子体的绝热膨胀.因此提供了对相对论喷流中激波形成和演化的物理原因更深入的理解.并对Blazar天体中视超光速节点频谱演化提出了新的解释.  相似文献   

18.
从2004年10月起,国家天文台怀柔射电频谱仪增加了新的超高分辨率观测模式:在1.10~1.34 GHz频带其时间分辨率为1.25 ms,频率分辨率为4 MHz。报告了3个超高分辨率下观测到的太阳射电精细结构事件,包括射电尖峰辐射、鱼群结构和重叠的精细结构,在射电精细结构之后8~14 min,在米波段都发现射电II型爆发,3个事件的米波II型爆发(示踪着日冕激波)都有相关联的日冕物质抛射(Coronal Mass Ejection,CME)。  相似文献   

19.
明安图射电频谱日像仪(Mingantu Spectral Radioheliograph, MUSER)能够在0.4--15GHz超宽频带内实现高时间、高空间、高频率分辨率的太阳射电成像. 而射电亮温度是描述太阳物理过程的一个重要的参数, 在研究不同射电辐射机制、太阳磁场以及太阳爆发过程中非热粒子加速等问题上有着非常重要的作用, 因此必须对MUSER观测的图像进行亮温度定标. 将介绍一种适用于射电日像仪图像强度定标的方法. 太阳射电图像中包含着太阳圆盘的结构信息, 利用射电日像仪短基线的可视度函数拟合第一类贝塞尔函数, 可以得到图像中宁静太阳圆盘的射电半径和强度, 再利用瑞利-金斯定律和每天的太阳射电流量可以计算得到每天图像的定标因子$G_c$, 从而实现对MUSER图像强度的定标. 将该方法应用到MUSER的实际观测数据中, 包括宁静太阳和有太阳射电爆发等不同的情况, $G_c$的误差基本不超过10%, 得到的宁静太阳亮温度与其他宁静太阳的结果具有较高的相关性, 表明了此方法的可行性和有效性.  相似文献   

20.
太阳射电爆发的动态频谱观测是研究太阳活动的重要手段之一.基于对2015年8月27日蒙城太阳射电频谱仪(Mc SRS)所观测得到一个M2.9级太阳耀斑光变特征的分析,发现由于仪器电子学上的问题,传统定标方法给出的结果并不理想.利用日本野边山的射电偏振仪(NoRP)/射电日像仪(NoRH)以及地球静止轨道环境业务卫星(GOES)的观测数据,结合有关辐射机制可以对定标方法进行改进.和传统的定标方法相比,改进后的定标结果和NoRP/NoRH的观测结果显示出更好的相关性,更好地揭示了耀斑射电频谱的演化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号