首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太阳光压是影响高轨卫星轨道精密确定的主要因子之一,这种摄动的有效模制将进一步改进卫星轨道的预报精度.主要对太阳光压模型中面质比误差对地球倾斜同步轨道卫星轨道预报的影响进行了分析.20%面质比参数标定误差对地球倾斜同步轨道卫星位置预报影响仿真结果显示:一天内前16h,x、z分量的预报误差幅度相对较小,y分量误差相对较大;一天内最后8h,x、y、z各分量误差发散明显,但z分量的误差发散程度较大.20%面质比参数标定误差对地球倾斜同步轨道卫星速度预报影响仿真结果显示,一天内,x、y、z各分量的预报误差幅度不超过1 mm/s.  相似文献   

2.
刘林 《天文学报》1997,38(2):191-203
为了对卫星轨道径向位置误差进行分析,本文将给出由地球北球形引力位引起的卫星径向摄动表达式。它将同时包含完整的卫星轨道道偏心率的0阶和1阶项,并给出径向位置摄动空间分布的一种简单计算方法,它可明显地节省计算机时。  相似文献   

3.
卫星径向位置摄动计算中的几个问题   总被引:1,自引:0,他引:1  
为了对卫星轨道径向位置误差进行分析,本文将给出由地球非球形引力位(包括潮汐形变)引起的卫星径向位置摄动表达式,它将同时包含完整的卫星轨道偏心率的0阶和1阶项,并给出径向位置摄动空间分布的一种简单计算方法,它可明显地节省计算机时.  相似文献   

4.
关于星座小卫星的编队飞行问题   总被引:3,自引:0,他引:3  
从轨道力学角度来看星座小卫星编队飞行和星星跟踪中的伴飞,遵循着如下动力学机制:(1)在各小卫星绕地球运动过程中轨道摄动变化的主要特征决定了星-星之间的空间构形,(2)当星星之间相互距离较近时,在退化的限制性三体问题(实为限制性二体问题)中,共线秤动点附近的条件周期运动亦可在一定时间内制约星-星之间的空间构形.将具体阐明这两种动力学机制的原理和相应的星星之间的相对构形,并用仿真计算来证实这两种动力学机制的适用范围,为星座小卫星编队飞行和在伴飞运动过程中进行轨控提供理论依据和具体的轨控条件.  相似文献   

5.
轨道偏心率的变化极其重要,它是制约各类(不同高度)空间飞行体轨道寿命的关键因素之一.对于地球低轨卫星,主要受大气耗散作用的影响,而对环月(或环火星)低轨卫星,主要受非球形引力位中奇次带谐项的影响,会出现变幅较大的长周期变化,从而导致近星点高度hp在一段时间内有明显的下降趋势.对大偏心率轨道和高轨道,第三体的引力作用也会使e出现变幅较大的长周期变化,近星点高度hp也会有明显下降的现象,这都会影响卫星的轨道寿命,但这一动力学机制与大气耗散机制和非球形引力机制都不相同.即对轨道偏心率的变化特征及其对轨道寿命的影响作一综述.  相似文献   

6.
月球物理天平动对环月轨道器运动的影响   总被引:3,自引:0,他引:3  
张巍  刘林 《天文学报》2005,46(2):196-206
月球物理天平动是月球赤道在空间真实的摆动,会导致月球引力场在空间坐标系中的变化,从而引起环月轨道器(以下称为月球卫星)的轨道变化,这与地球的岁差章动现象对地球卫星轨道的影响类似.采用类似对地球岁差章动的处理方法,讨论月球物理天平动对月球卫星轨道的影响,给出相应的引力位的变化及卫星轨道的摄动解,清楚地表明了月球卫星轨道的变化规律,并和数值解进行了比对,从定性和定量方面作一讨论.  相似文献   

7.
对于在轨运行的BDS (BeiDou Navigation Satellite System)卫星, 太阳光压是作用在卫星上主要的非引力摄动. 受多种因素的影响, 太阳光压摄动力难以精确建模, 是BDS卫星精密定轨和轨道预报过程中重要的误差来源. 由于ECOMC (Empirical CODE Orbit Model 1 and 2 Combined)模型兼顾了ECOM1 (Empirical CODE Orbit Model 1)和ECOM2 (Empirical CODE Orbit Model 2)模型的特点, 在模型中引入了较多的待估参数, 使得参数之间存在强相关性. 针对ECOMC模型的这一缺陷, 文中收集了2019年1月至2022年4月武汉大学分析中心提供的BDS-3卫星精密星历, 采用动力学轨道拟合方法得到了ECOMC模型的13个光压参数. 通过对该模型的光压参数进行时间序列分析, 分别给出了BDS-3 IGSO (Inclined Geosynchronous Orbit)和MEO (Medium Earth Orbit)卫星光压模型的参数选择策略. 并利用轨道拟合和轨道预报试验, 验证了光压模型参数选择策略的合理性. 结果表明, 采用改进型ECOMC模型进行BDS-3 IGSO和MEO卫星轨道拟合的效果最佳, 同时, 也能够提升BDS-3 IGSO和MEO卫星中长期轨道预报的精度.  相似文献   

8.
卫星导航系统定位精度受伪距测量误差、大气时延误差、卫星原子钟钟差及卫星轨道误差等多方面因素综合影响。传统通常采用基于精度因子与用户等效伪距误差的方法对定位误差进行评估,但在其精度表征公式推导过程中需对测量方程组系数矩阵H及用户等效伪距误差分布做若干假设,因此它实际上是一个近似评估公式。此外,各类误差源中的卫星轨道误差属于三维误差,需经过坐标转换,并利用经验参数模型才能换算至用户等效伪距误差。为此,提出采用矩阵摄动数学理论研究卫星轨道误差对定位方程组解的影响,利用谱范数条件数对方程组形态进行刻画。仿真结果表明,方法能够直接反映卫星轨道误差对定位精度的影响,无需进行轨道坐标及用户等效伪距误差换算,能够更加直接和准确地评估卫星轨道误差对定位解精度的影响。  相似文献   

9.
环火卫星运动的坐标系附加摄动及相应坐标系的选择   总被引:1,自引:0,他引:1  
与处理地球卫星相关问题类似,在研究和处理环火卫星(尤其是低轨卫星)的轨道问题时,宜采用火心历元平赤道坐标系,即火心天球坐标系,其xy坐标面和x轴方向就是相应的平赤道面和平春分点方向.与地球的岁差章动现象类似,在该坐标系中,火星赤道面在空间的摆动同样会引起坐标系附加摄动.采用类似对地球岁差章动的处理方法,在一定精度前提下,基于IAU2000火星定向模型,处理了火星赤道面摆动中的岁差效应,并在此基础上,研究岁差对环火卫星轨道的影响,给出了相应的火星非球形引力位的变化及其导致的卫星轨道的坐标系附加摄动解,其表达形式简单,引用方便.与高精度数值解的比对表明,该分析解能够满足通常的精度要求.因此,在处理环火卫星(即使是低轨卫星)轨道及其相关问题时,可以采用统一坐标系:火心天球坐标系.而不必像当初处理地球卫星那样,为了避免计算坐标系附加摄动而引进一种混合型赤道坐标系,即采用瞬时真赤道面和历元平春分点方向作为其xy坐标面和x轴方向.在统一坐标系的选择下,实际工作中就不会存在坐标系转换的麻烦.  相似文献   

10.
卫星动力学模型误差是客观存在的事实,动力学模型误差传递到轨道确定算法中构成部分形式未知的模型误差,并且与测量系统自身的系统误差和随机误差耦合在一起形成定轨模型误差,严重影响轨道确定精度.详细推导了存在动力学模型误差的轨道改进方程,对模型中能准确描述的部分建立了参数化模型,对不能准确描述的误差部分,建立了非参数模型.构建了部分线性轨道改进模型,利用二阶段估计法和核函数估计法对模型误差进行拟合估计,并在轨道改进中予以补偿.根据数据深度理论,建立了非参数模型误差的深度加权核估计方法,提高了模型误差估计的抗差性.最后结合天基空间目标监视系统进行了轨道确定仿真实验.实验结果表明,模型误差是影响轨道确定精度的重要因素,核函数估计法可以有效估计定轨中的模型误差,窗宽是提高模型估计精度的重要变量,通过深度加权处理可以明显提高核函数估计的抗差性,提高轨道确定精度.  相似文献   

11.
侯锡云  赵玉晖  刘林 《天文学报》2012,53(4):308-318
首先在平面圆型限制性三体问题模型下给出了白道面内4种类型的对称无动力返回轨道,之后针对其中较实用的一种,考虑了其在白道面内的非对称情形,并探讨了其三维情形及近月、近地的轨道倾角限制.最后给出了地-月系真实引力模型下无动力返回轨道的设计方法和相应算例.  相似文献   

12.
中心体自转对天体轨道要素变化的后牛顿效应   总被引:2,自引:1,他引:1  
李林森 《天文学报》1990,31(1):108-111
本文给出了在三种引力理论为中心自转对天体轨道要素变化产生的后牛顿摄动效应的研究结果。研究结果表明:六个轨道要素除长钾不受摄动影响外其它五个要素均有周期摄动,特别升交点经度和近星点经度还有长期摄动效应。最后将文中的理论结论同前人的工作做了比较还应用于行星自转对卫星轨道要素变化的摄动效应计算上。作者在文[1]中研究了天体轨道要素变化的后牛顿效应,但在该文中并没有考虑中心体自转的影响。本文研究了三种引力理论(Einstein,Brans-Dick和Nordtvedt)中的这方面效应,并给出理论和数值的研究结果。  相似文献   

13.
天体自转因素导致的相对论性效应   总被引:1,自引:0,他引:1  
本文在PPN框架中得到了太用系内自转因素产生的瞬时轨道根数改正的一阶封闭分析解.轨道半长径和偏心率不受长期效应的影响,只受周期效应的影响;轨道倾角、升交点经度、近星点角距,平近点角既受长期效应又受周期效应的影响.我们用两种引力理论分别计算了太阳自转对地内大行星及—些小行星轨道,行星自转对自然卫星轨道,地球自转对人造卫星轨道所产生的各相对论性效应.  相似文献   

14.
为了适应星际探测的需求,本文建立了在新的精度要求下土星卫星运动对应的力学模型,具体讨论了土卫八的运动,并针对主要摄动源土卫六的引力作用,建立了轨道变化的分析解,以此表明建立了土卫运动理论该采取的途径和精密定轨宜采用以轨道根数作为状态量的数值定轨方法。  相似文献   

15.
本文借用推广的卡尔曼(Kalman)滤波法实时处理几圈单站的激光测距资料来改进卫星的轨道,以达到精密预报此后近期内卫星位置的目的。在建立动力学模型中,计及了地球扁球形的摄动、大气阻力、太阳辐射压的效应以及日月引力摄动。在计算这些摄动过程中,地球重力位对带谐、扇谐和田谐项都展开到了第11次和第11阶;大气密度分布采用简化的“指数模型”;地影假定呈圆柱形;并以旋转的开普勒轨道求日月的地心坐标。在卫星的状态估计过程中应用推广的序列估计算法,借助数值积分方法积分状态向量和协方差矩阵。利用激光卫星LAGEOS的测距模拟资料和真实数据分别对本方法进行了检验。结果表明:应用本方法即使处理单站的少数几圈的观测数据,可相当精确地预报卫星在此后几圈的位置。如果处理更多圈数的数据,则卫星的预报可以达到更高的精度。并且由于按照本方法建立起来的计算程序可以在小型电子计算机,例如PDP11/60上实施,同时保持应有的精度,因此它颇具有实用的价值。  相似文献   

16.
胡小工  黄珹 《天文学进展》2001,19(2):289-294
讨论满足约束条件的月球卫星飞行轨道的设计问题,将约束条件分类为只与太阳,月球,地球,飞行器和观测站之间的相对位置有关的运行学约束条件以及涉及到飞行器轨道运行的动力学约束条件,在考虑月球卫星轨道的受力情况后,给出一种准确快速地计算和设计满足约束条件的标准飞行轨道的方法,并应用于不同约束条件下月球卫星的轨道预设计,初步讨论了轨道设计的误差分析,轨道跟踪及实时精密定轨等正在进行的其它相关工作。  相似文献   

17.
以激光测距资料精密定轨结果为参考轨道,分析了两种典型版本SGP4/SDP4模型对低、中、高轨道卫星预报误差的放大规律,当预报超过一定的圈数后误差成指数增长.数值试验结果表明:对低、中、高轨卫星预报误差无显著放大圈数分别是(h≤300 km),40;(300 km≤h≤1 200 km),150;(1 200 km≤h≤10 000 km),300;半同步卫星(19 000km≤h≤22 000 km),55;同步卫星(33 000 km≤h≤38 000 km),10.并图示出参考卫星轨道预报误差的放大规律,供工程中利用双行根数和SGP4/SDP4模型作轨道预报时参考.  相似文献   

18.
在小行星探测任务中,航天器轨道设计需要充分考虑到小行星的非球形引力场的影响.太阳系中大部分小行星具有形状不规则、密度不均匀的特点,因此,在没有绕飞轨道数据的情况下,精确计算其引力场非常困难.利用不规则小行星的多面体模型,采用体积离散方法通过直接积分计算小行星引力场球谐系数和表面重力场分布情况.将该方法与多面体方法进行了比较,并以(433)Eros为例,通过该方法计算得到的结果与NEAR(Near-Earth Asteroid Rendezvous)探测器的轨道数据反演结果比较,C20项误差不超过2%,使用该方法对我国小行星探测任务拟探测的(1996)FG3小行星的重力场进行了计算.以嫦娥二号探测器飞越的(4179)Toutatis小行星为例,结合相应的雷达观测数据提供的小行星形状模型,计算其表面引力势情况,为通过飞越任务获取的光学图像分析其表壤的分布、流向等提供了相应的理论依据.该方法适用于密度不均匀天体,可为小行星探测任务轨道设计和着陆提供可靠的小行星引力场数据.  相似文献   

19.
本文根据误差理论,对PUVM2测轨方法的误差及其传播规律进行了初步的分析和研究,给出了卫星的轨道根数σ和空间位置r↑→的内符合误差估计公式。  相似文献   

20.
刘林  张巍 《天文学报》2007,48(2):220-227
论述的短弧定轨,是指在无先验信息情况下又避开多变元迭代的初轨计算方法,它需要相应的动力学问题有一能反映短弧内达到一定精度的近似分析解.探测器进入月球引力作用范围后接近月球时可以处理成相对月球的受摄二体问题,而在地球附近,则可处理成相对地球的受摄二体问题,但在整个过渡段的力模型只能处理成一个受摄的限制性三体问题.而限制性三体问题无分析解,即使在月球引力作用范围外,对于大推力脉冲式的过渡方式,相对地球的变化椭圆轨道的偏心率很大(超过Laplace极限),在考虑月球引力摄动时亦无法构造摄动分析解.就此问题,考虑在地球非球形引力(只包含J2项)和月球引力共同作用下,构造了探测器飞抵月球过渡轨道段的时间幂级数解,在此基础上给出一种受摄二体问题意义下的初轨计算方法,经数值验证,定轨方法有效,可供地面测控系统参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号