首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the C p 0 data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S 298 0 -S 0 0 was calculated to be 541.2±3.0 J·mol-1·K-1. Our value for S 298 0 -S 0 0 is 12.0 J·mol-1·K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2±3.0, is within 6.2 J·mol-1·K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J·mol-1·K-1.  相似文献   

2.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

3.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

4.
 This paper presents an improved generalisation of cation distribution determination based on an accurate fit of all crystal-chemical parameters. Cations are assigned to the tetrahedral and octahedral sites of the structure according to their scattering power and a set of bond distances optimised for spinel structure. A database of 295 spinels was prepared from the literature and unpublished data. Selected compositions include the following cations: Mg2+, Al3+, Si4+, Ti4+, V3+, Cr3+, Mn2+, Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+ and vacancies. Bond distance optimisation reveals a definite lengthening in tetrahedral distance when large amounts of Fe3+ or Ni2+ are present in the octahedral site. This means that these cations modify the octahedral angle and hence the shared octahedral edge, causing an increase in the tetrahedral distance with respect to the size of the cations entering it. Some applications to published data are discussed, showing the capacity and limitations of the method for calculating cation distribution, and for identifying inconsistencies and inaccuracies in experimental data. Received: 19 February 2001 / Accepted: 1 June 2001  相似文献   

5.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

6.
Zusammenfassung Die chemische Zusammensetzung eines Ti–Zr-Granats (Schorlomit) mit bis zu 32 Mol.-% Kimzeyit-Komponente wurde zusätzlich zu den chemischen Analysen mittels Mössbauer-Spektrum auf die Fe2+/Fe3+-Verteilung im Granat untersucht. Der Granat hat folgende Zusammensetzung: (Ca2,85Na0,01Mg0,1Mn0,004Y0,001)2,97(Zr0,542 Ti0,68 Al0,065Fe 0,41 3+ Fe 0,05 2+ Mg0,246Cr0,003)2,0(Si2,002Al0,556Ti0,163Fe 0,240 2+ Fe 0,029 3+ )3,0O12. Die Dichte beträgt 3,85 g·cm–3, die Brechzahln=1,92. Die Röntgendiffraktometer-Peaks sind aufgespalten ina 0=1,229 und 1,225 nm. Der Granat stammt aus Kalksilikatfels-Einschlüssen im Gabbro des Radautals, Harz.
The titanium-zirconium garnet of calc-silicate rock inclusions of the gabbro of Radautal, Harz Mountains, F.R.G.
Summary The chemical composition of a Ti–Zr-garnet (schorlomite) with up to 32 mol-% kimzeyite component was investigated additionally to chemical analyses by means of the Mössbauer spectrum for the Fe3+/Fe2+ distribution in the garnet. The composition is: (Ca2,85Na0.01 Mg0.1Mn0.004Y0.001)2.97(Zr0.542Ti0.68Al0.065Fe 0.41 3+ Fe 0.05 2+ Mg0.246Cr0.003)2.0(Si2.002 Al0.556Ti0.163Fe 0.240 2+ Fe 0.029 3+ )3.0O12. Spec. gr. 3.85 g·cm–3,n=1.92. The x-ray peaks are splitted witha 0=1.229 and 1.225 nm. The garnet occurs in calc-silicate rock inclusions of the gabbro of Radautal, Harz Mountains, F. R. G.


Mit 2 Abbildungen

Herrn Prof. Dr.H. Meixner zur Erreichung seines 70. Lebensjahres gewidmet.  相似文献   

7.
A new coexisting amphibole pair was recently found in the Jianshan iron deposit, Loufan of Shanxi Province, China. Electron microprobe analysis shows that the coexisting pair is composed of grünerite K0.001 (Na0.027 Ca0.073 Mn0.031 Fe 1.801 2+ )1.932 (Fe 2.948 2+ Mg1.964 Ti0.002 Al0.087)5Si8.069 O22.10(OH)2 and ferropargasite (K0.135 Na0.461)0.596 (Na0.088 Ca1.853 Mn0.005 Fe 0.072 2+ )2(Mn0.005Fe 2.789 2+ Mg0.875Ti0.021Fe 0.499 3+ Al0.812)5(Si6.103Al1.897)8O22.00(OH)2. The two kinds of amphiboles occur in amphibole schist not only as separate phenocrysts, but also are combined to form “single-crystal” phenocrysts in the form of topotactic intergrowths with the common c- and b-axes. The boundary between topotactic grünerite and ferropargasite is optically and chemically sharp. In comparison with the coexisting ferromagnesian amphibole and calcic amphibole pair discovered by predecessors, the newly discovered pair has lower Mg/Fe ratios and wider miscibility gaps.  相似文献   

8.
The Honvang serpentinite body in the Song Ma fault zone consists mainly of massive serpentinite, altered gabbro and rare chromitite. The serpentinite preserves relict chromian spinel with rare olivine inclusions. The compositional relationship between the Fo content of olivine (Fo90–92) and YCr [atomic ratio Cr / (Cr + Al) = 0.43–0.44] of chromian spinel suggests that the original peridotite was spinel-bearing lherzolitic harzburgite. Chromitite is typically a high-Al type, consisting of chromian spinel with YCr = 0.43–0.44. Saussuritized fine-grained gabbros display nearly flat rare earth element patterns, suggesting MORB-like affinity. Considering this petrotectonic information, we suggest that the serpentinite body of the Song Ma fault zone represents a remnant of paleo-oceanic lithosphere between the Indochina and South China blocks. The lherzolitic harzburgite may have formed in an environment with low degrees of melt depletion in a slow-spreading setting similar to some Tethyan paleo-oceanic lithospheres.  相似文献   

9.
Jinshanjiangite (acicular crystals up to 2 mm in length) and bafertisite (lamellar crystals up to 3 × 4 mm in size) have been found in alkali granite pegmatite of the Gremyakha-Vyrmes Complex, Kola Peninsula. Albite, microcline, quartz, arfvedsonite, zircon, and apatite are associated minerals. The dimensions of a monoclinic unit cell of jinshanjiangite and bafertisite are: a = 10.72(2), b=13.80(2), c = 20.94(6) Å, β = 97.0(5)° and a = 10.654(6), b = 13.724(6), c = 10.863(8) Å, β = 94.47(8)°, respectively. The typical compositions (electron microprobe data) of jinshanjiangite and bafertisite are: (Na0.57Ca0.44)Σ1.01(Ba0.57K0.44)Σ1.01 (Fe3.53Mn0.30Mg0.04Zn0.01)Σ3.88(Ti1.97Nb0.06Zr0.01)Σ2.04(Si3.97Al0.03O14)O2.00(OH2.25F0.73O0.02)Σ3.00 and (Ba1.98Na0.04K0.03)Σ2.05(Fe3.43Mn0.37Mg0.03)Σ3.83(Ti2.02Nb0.03)Σ2.05 (Si3.92Al0.08O14)(O1.84OH0.16)Σ2.00(OH2.39F1.61)Σ3.00, respectively. The minerals studied are the Fe-richest members of the bafertisite structural family.  相似文献   

10.
Wadi Sifein podiform chromite deposits, Central Eastern Desert of Egypt, are hosted by fully serpentinized peridotite that is a part of the dismembered Pan‐African ophiolite complexes. Relics of primary minerals and the chemical characters indicate that the ophiolitic rocks were derived from depleted mantle peridotite of harzburgite and subordinate dunite compositions. The mantle rocks were initially formed at a mid‐oceanic ridge and subsequently thrust at a supra‐subduction zone. The chromite mineralization at Wadi Sifein area displays either pod‐shaped bodies with massive and lumpy chromitite appearance or dissemination of chromian‐spinel in serpentinite matrix. The podiform chromitite exhibits a very limited compositional range in terms of Cr# [Cr/(Cr + Al) atomic ratio] and Mg# [Mg/(Mg + Fe) atomic ratio]. The chromian‐spinel, however, frequently displays optical and geochemical zoning. Four zones can be identified from core to edge: inner core representing the original composition of the chromian‐spinel; narrow Cr‐rich ferritchromit zone; wide ferritchromit zone; and outer Cr‐magnetite/magnetite zone. The zonation of chromian‐spinel is interpreted to be a result of serpentinization rather than magmatic or metamorphic processes. The geochemical data obtained from the chromitite and chromian‐spinel was statistically processed using discriminant and R‐mode factor analyses. Two trends, minor and major, were achieved considering the formation of ferritchromit. The minor trend is controlled by the redistribution of trivalent cations, where Cr2O3 increased on the expense mainly of Al2O3 and to less extent Fe2O3 to form zone II during the peak of serpentinization. The major trend of alteration, however, is explained by the exchange between Mg‐Fe2+ rather than Cr, Al, and Fe3+ to form zone III. Kammererite formation was accompanied the formation of zones III and IV at a 314°C temperature of formation.  相似文献   

11.
Zirconolite, allanite and hoegbomite are present as accessory phases in a metasomatically altered spinel-calcite-marble from the contact with the Bergell intrusives (Switzerland/Italy). Textural relationships indicate a step-wise alteration of spinel to 1) hoegbomite or corundum + magnetite, 2) margarite and 3) chlorite. Replacement of spinel by hoegbomite can be described by the substitution 1.94(Mg2+, Fe2+, Zn2+, Mn2+, Ca2+)Ti4+ +0.12(OH) where Al3+ and Fe3+ are held constant. The average composition of the Bergell hoegbomites is given by the formula Fe 0.97 2+ Mg0.69Zn0.04Ti0.17Al3.94Fe 0.06 3+ O7.98(OH)0.02 and seems to be imposed by the composition of pre-existing spinel. During the first two steps of spinel alteration, calcite was replaced by anorthite+phlogopite, and the rare earth element(REE)-bearing minerals zirconolite, allanite and sphene were formed. Allanites have characteristic chondrite-normalized REE patterns with enrichment in the light REE. The zirconolite patterns show a marked increase in concentration from La to Ce, followed by an almost constant section. Sphene lacks detectable La, and its REE patterns vary from grain to grain. Contemporaneous formation of phlogopite, REE-bearing minerals and hoegbomite during replacement of the spinel-calcite-marble indicates that the metamorphic fluid introduced potassium along with REE and other high valence cations (Ti4+, Zr4+, U4+, Th4A3804265, Nb5A3804265, Y3A3804265) possibly as polynuclear complexes. The abundance of fluorine-bearing phlogopite and fluor-apatite as well as their close association with REE-bearing minerals and hoegbomite suggests F and PO 4 3– as likely ligands for complexing of the above mentioned elements.  相似文献   

12.
High-Cr podiform chromitites hosted by upper mantle depleted harzburgite were investigated for PGM and other solid inclusions from Faryab ophiolitic complex, southern Iran. Chemical composition of the chromian spinels, Cr#[100*Cr/(Cr+Al) = 77–85], Mg# [100*Mg/(Mg+Fe2+) = 56–73], TiO2≤0.25wt%, and the presence of abundant primary hydrosilicates included in the chromian spinels indicate that the deposits were formed from aqueous melt generated by high degree of partial melting in a suprasubduction zone setting. Solid phases hosted by chromian spinel grains from the Faryab ophiolitic chromitites can be divided into three categories: PGM, base-metal minerals and silicates. Most of the studied PGM occurred as very small (generally less than 20 μm in size) primary single or composite inclusions of IPGE-bearing phases with or without silicates and base metal minerals. The PGM were divided into the three subgroups: sulfides, alloys and sulfarsenides. Spinel-olivine geothermometry gives the temperatures 1,131–1,177 °C for the formation of the studied chromitites. At those temperatures, fS2 values ranged from 10?3 to 10?1 and provided a suitable condition for Ru-rich laurite formation in equilibrium with Os-Ir alloys. Progressive crystallization of chromian spinel was accompanied by increase of fS2 in the melt. The formation of Os-rich laurite, erlichmanite and then sulfarsenides occurred by increase of fS2 and slight decrease in temperature of the milieu. The compositional and mineralogical determinations of PGM inclusions respect to their spatial distribution in chromian spinels show that the minerals regularly distributed within the chromitites, reflecting cryptic variation consistent with magmatic evolution during host chromian spinel crystallization.  相似文献   

13.
Magnetic properties are reported for the spinel series Fe2.4—t Cr0.6Ti t O4, 0≦t≦0.7, with t=0, 0.2, 0.4, 0.6 and Fe2.1—t Cr0.9Ti t O4, 0≦t≦0.55, with t=0, 0.2, 0.4, 0.45, 0.5. Magnetic moment data are compared with theoretical values derived from different ion distribution models. With increasing Ti concentration the compositions become hard magnetic spinels due to the increased number of Fe2+ ions on A- and B-sites of the spinel lattice.  相似文献   

14.
The close intergrowth of two native alloys of the compositions Ni0.59Cu0.24Al0.15Fe0.01Mn0.01 and Pd0.55Pt0.36Rh0.09 with a size of 10 μm has been discovered in the regolith from the Mare Crisium. A conclusion on its exhalative origin is made.  相似文献   

15.
Summary Recently several natural and artificial ferric iron sulphate crystal structures have been solved. Sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O, does not provide good crystals for structural purposes. However if we examine crystallographic, chemical and physical data some useful information about the ...Fe–O–S... structural topology can be inferred. In fact this analysis strengthens the hypothesis that there is a {Fe 2 3+ (SO4)4(OH)2} chain in sideronatrite like that found in guildite, Cu2+Fe3+(SO4)2(OH)·4H2O.
Sideronatrit: Ein Mineral mit einer {Fe2(SO4)4(OH)2}-Kette vom Typ Guildit?
Zusammenfassung Kürzlich wurden die Kristallstrukturen mehrerer natürlicher und künstlicher Ferrisulfate gelöst. Sideronatrit, Na2Fe3+(SO4)2(OH)·3H2O, liefert keine für die Strukturuntersuchung gut geeigneten Kristalle. Dennoch erhält man aus der Untersuchung der kristallographischen, chemischen und physikalischen Daten nützliche Information über die ...Fe–O–S...-Topologie der Struktur. Eine solche Analyse spricht für die Hypothese, daß der Sideronatrit eine {Fe 2 3+ (SO4)4(OH2)}-Kette enthält, wie sie im Guildit, Cu2+Fe3+(SO4)2(OH)·4H2O, gefunden wurde.


With 1 Figure

Paper presented at the Sixth European Crystallographic Meeting. Barcelona, Spain 1980.  相似文献   

16.
 In order to develop a model for simulating naturally occurring chromian spinel compositions, we have processed published experimental data on chromian spinel-melt equilibrium. Out of 259 co-existing spinel-melt experiments reported in the literature, we have selected 118 compositions on the basis of run time, melt composition and experimental technique. These data cover a range of temperatures 1150–1500° C, oxygen fugacities of −13<log f O2< −0.7, and bulk compositions ranging from basalt and norite, to komatiite. Six major spinel components with Cr3+, Al3+, Ti4+, Mg2+, Fe3+ and Fe2+-bearing end-members were considered for the purpose of describing chromite saturation as a function of melt composition, temperature and oxygen fugacity at 1 atmosphere pressure (0.101 MPa). The empirically calibrated mineral-melt expression based on multiple linear regressions is: K Sp i =A/T(K)+B log f O2+C ln (Fe3+/Fe2+)L+D ln R L +E, where K Sp i is an equilibrium constant and R L is a melt structure-chemical parameter (MSCP). Twenty-eight forms of equilibrium constants were considered, including single distribution coefficients, exchange equilibrium constants, formation constants for AB2O4 components, as well as simple “spinel cation ratios”. For each form of the equilibrium constants, a set of 16 combinations of the MSCPs have been investigated. The MSCP is present in the form of composite ratios [e.g., Si/O, NBO/T,(Al+Si)/Si, or (Na+K)/Al] or as simple cation ratios (e.g., Mg/Fe2+). For the calculation of Fe3+ and Fe2+ species in silicate melts, we used existing equations, whereas the Fe3+/Fe2+ ratio of spinels was calculated from the spinel stoichiometry. The regression parameters that best repoduce the experimental data were for the following constants: (Fe3+/Fe2+) Sp , (Mg/Fe2+) Sp /(Mg/Fe2+) L , (Cr/Al) Sp / (Cr/Al) L , K FeCr2O4, and Ti Sp /Ti L . These expressions have been combined into a single program called SPINMELT, which calculates chromite crystallization temperature and composition at a given f O2 with an average accuracy of ∼10° C and 1–2 mol%. An example of the use of SPINMELT is presented for a magma parental to the Bushveld Complex. Received: 30 May 1995/Accepted: 1 November 1995  相似文献   

17.
A new mineral, ferrotochilinite, ideally 6FeS · 5Fe(OH)2, was found at the Oktyabr’sky Mine, Oktyabr’skoe Cu-Ni deposit, Noril’sk, Krasnoyarsk krai, Siberia, Russia. It is associated with ferrovalleriite, magnetite and Fe-rich, chlorite-like phyllosilicate in the cavities of pentlandite-mooihoekite-cubanite ore with subordinate magnetite and chalcopyrite. Ferrotochilinite occurs as flattened on [001], prismatic to elongated lamellar crystals up to 0.1 × 0.5 × 3.2 mm, typically split and curved. Aggregates (up to 6.5 mm in size) are fanlike, rosette-like, or chaotic. Ferrotochilinite is dark bronze. The streak is black. The luster is moderately metallic. The Mohs’ hardness is ca. 1; VHN is 13 kg/mm2. Cleavage is {001} perfect, micalike. Individuals are flexible, inelastic. D(calc) = 3.467 g/cm3. In reflected light, ferrotochilinite is gray, with the hue changing from pale beige to bluish; bireflectance is distinct. Anisotropy is distinct, with gray bluish to yellowish beige rotation colors. No internal reflections. Reflectance values [R min-R max, % (λ, nm)] are: 11.6–11.4 (470), 11.2–12.4 (546), 11.1–13.6 (589), 11.0–15.5 (650). The IR spectrum shows the presence of (OH) groups bonded with Fe cations and the absence of H2O molecules. Chemical composition (wt %; electron probe; H content is calculated) is as follows: 0.02 Mg, 61.92 Fe, 0.03 Ni, 0.09 Cu, 19.45 S, 16.3 O, 1.03 H calc; the total is 98.84. The empirical formula calculated on the basis of 6 S atoms is: Mg0.01Fe10.96Ni0.005Cu0.015S6(OH)10.07 = (Fe5.98Cu0.0015Ni0.005)Σ6S6(OH)9.80(Fe 4.89 2+ Mg0.01)Σ4.90(OH)9.80Fe 0.09 3+ (OH)0.27. Ferrotochilinite is monoclinic, space group is C2/m, Cm or C2, the unit-cell dimensions are: a = 5.463(5), b = 15.865(17), c = 10.825(12) Å, β = 93.7(1)°, V = 936(3) Å3, Z = 2. The strongest reflections in the X-ray powder diffraction pattern (d, Å-I[hkl]) are: 10.83-13[001], 5.392-100[002], 3.281-7[023], 2.777-7[150], 2.696-12[004, $20\bar 1$ ], 2.524-12[ $22\bar 1$ , $20\bar 2$ ], 2.152-8[134, 153], 1.837-11[135, $17\bar 3$ ]. Ferrotochilinite is a structural analog of tochilinite, with Fe2+ instead of Mg in the hydroxide part. The type specimen is deposited in Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

18.
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.  相似文献   

19.
A new Cu-rich variety of lyonsite has been found from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia). The empirical formula is Cu4.33Fe 2.37 3+ Ti0.26Al0.26Zn0.07(V5.85As0.07Mo0.07P0.01S0.01)O24. The crystal structure was studied on single crystal using synchrotron radiation, R = 0.0514. The mineral is orthorhombic, Pnma, a = 5.1736(7), b =10.8929(12), c = 18.220(2) Å, V = 1026.8(2) Å3, and Z = 2. The structural formula is (Cu0.6Ti0.3Al0.3Fe 0.2 3+ 0.6)Σ2Cu2(Fe 2.2 3+ Cu1.8)Σ4(V5.8As0.1Mo0.1)Σ6O24. It is proposed to recast the simplified formula of lyonsite as Cu3+x (Fe 4?2x 3+ Cu2x )(VO4)6, where 0 ≤ x ≤ 1.  相似文献   

20.
The course of crystallization of basalt forming clinopyroxenes in the olivine basalt-hawaiite-mugearite-trachyte series from the Hocheifel area (Western Germany) has been presented by the author in, an earlier paper (Huckenholz 1964, part I). The present paper deals with the evolution of clinopyroxenes from the basanitoid rocks in the same area. The basanitoids are richer in clinopyroxenes than the normal olivine basalts and may be a product of accumulation of clinopyroxenes in an olivine basalt magma.Mineral separation is very troublesome in fine-grained volcanic rocks but special procedures (as outlined in part I) allow chemical, optical and X-ray analyses of three generations of clinopyroxenes and of other basalt forming minerals. The first clinopyroxenes formed in the basanitoids is a greenish chromian salite Ca45Mg43Fe12 which is preserved in the cores of the phenocrysts. Strongly zoned brown titansalite Ca45Mg41Fe14 surrounds the chromian salite or appears in independent microphenocrysts. The groundmass clinopyroxene is a sodian titansalite Ca46Mg37Fe17 with a small optic axial angle. In contrast to the olivine basalt-trachyte series the clinopyroxenes of the basanitoids are richer in titanium and aluminum.Phenocrysts of nickel-rich olivine Fe14–16, relics of orthopyroxene Fs14 and chrome spinell were formed together with the chromian clinopyroxene. The same minerals have been observed in the olivine basalts and hawaiites. This paragenesis indicates high pressure and high temperature in the alkali basalts of the Hocheifel during an initial stage of magmatic evolution. With the decrease of pressure mineral reactions occurred with the alkali basalt melt. The high pressure clinopyroxenes of the basanitoids were changed to a larger extent than the clinopyroxenes of the olivine basalts and hawaiites because they are in contact with the magma for a longer period of time. This favours the reaction between the solids and the melt, and the high pressure garnet and/or enstatite components in the elinopyroxenes are substituted by Ca-Tschermak's and titanaugite molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号