首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient gravity field recovery from GOCE gravity gradient observations   总被引:4,自引:2,他引:2  
 An efficient algorithm is proposed for gravity field recovery from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite gravity gradient observations. The mathematical model is formulated in the time domain, which allows the inclusion of realistic observational noise models. The algorithm combines the iterative solution of the normal equations, using a Richardson-type iteration scheme, with the fast computation of the right-hand side of the normal equations in each iteration step by a suitable approximation of the design matrix. The convergence of the iteration is investigated, error estimates are provided, and the unbiasedness of the method is proved. It is also shown that the method does not converge to the solution of the normal equations. The performance of the approach for white noise and coloured noise is demonstrated along a simulated GOCE orbit up to spherical harmonic degree and order 180. The results also indicate that the approximation error may be neglected. Received: 30 November 1999 / Accepted: 31 May 2000  相似文献   

2.
 The recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG) is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth's gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies (preconditioned conjugate gradient method, semi-analytic approach, and distributed non-approximative adjustment), which are based on different concepts, are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that the three methods deliver nearly identical results—even in the case of large data gaps in the observation time series. The newly proposed distributed non-approximative adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications. Received: 17 December 2001 / Accepted: 17 July 2002 Acknowledgments. We would like to thank Prof. W.-D. Schuh, Institute of Theoretical Geodesy, University of Bonn, for providing us with the serial version of the PCGMA algorithm, which forms the basis for the parallel PCGMA package developed at our institute. This study was partially performed in the course of the GOCE project `From E?tv?s to mGal+', funded by the European Space Agency (ESA) under contract No. 14287/00/NL/DC. Correspondence to: R. Pail  相似文献   

3.
 A special class of regularization methods for satellite gravity gradiometry based on Tikhonov spherical regularization wavelets is considered, with particular emphasis on the case of data blurred by random noise. A convergence rate is proved for the regularized solution, and a method is discussed for choosing the regularization level a posteriori from the gradiometer data. Received: 23 March 2000 / Accepted: 20 September 2000  相似文献   

4.
 Different types of present or future satellite data have to be combined by applying appropriate weighting for the determination of the gravity field of the Earth, for instance GPS observations for CHAMP with satellite to satellite tracking for the coming mission GRACE as well as gradiometer measurements for GOCE. In addition, the estimate of the geopotential has to be smoothed or regularized because of the inversion problem. It is proposed to solve these two tasks by Bayesian inference on variance components. The estimates of the variance components are computed by a stochastic estimator of the traces of matrices connected with the inverse of the matrix of normal equations, thus leading to a new method for determining variance components for large linear systems. The posterior density function for the variance components, weighting factors and regularization parameters are given in order to compute the confidence intervals for these quantities. Test computations with simulated gradiometer observations for GOCE and satellite to satellite tracking for GRACE show the validity of the approach. Received: 5 June 2001 / Accepted: 28 November 2001  相似文献   

5.
The GOCE satellite observes gravity gradients with unprecedented accuracy and resolution. The GOCE observations are reliable within a well-defined measurement bandwidth. In this study, different finite and infinite impulse response filters have been designed to obtain the demanded pass. Exhaustive time and frequency domain investigations prove that the proposed infinite impulse response filter can be a real competitor of the existing solution of the filtering problem.  相似文献   

6.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:1,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   

7.
 The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients) in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified, i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic. Received: 20 February 2001 / Accepted: 24 October 2001  相似文献   

8.
The issue of optimal regularization is investigated in the context of the processing of satellite gravity gradiometry (SGG) data that will be acquired by the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite. These data are considered as the input for determination of the Earths gravity field in the form of a series of spherical harmonics. Exploitation of a recently developed fast processing algorithm allowed a very realistic setup of the numerical experiments to be specified, in particular: a non-repeat orbit; 1-s sampling rate; half-year duration of data series; and maximum degree and order set to 300. The first goal of the study is to compare different regularization techniques (regularization matrices). The conclusion is that the first-order Tikhonov regularization matrix (the elements are practically proportional to the degree squared) and the Kaula regularization matrix (the elements are proportional to the fourth power of the degree) are somewhat superior to other regularization techniques. The second goal is to assess the generalized cross-validation method for the selection of the regularization parameter. The inference is that the regularization parameter found this way is very reasonable. The time expenditure required by the generalized cross-validation method remains modest even when a half-year set of SGG data is considered. The numerical study also allows conclusions to be drawn regarding the quality of the Earths gravity field model that can be obtained from the GOCE SGG data. In particular, it is shown that the cumulative geoid height error between degrees 31 and 200 will not exceed 1 cm. AcknowledgmentsThe authors thank Dr. E. Schrama for valuable discussions and for computing the orbit used to generate the long data set. They are also grateful to Prof. Tscherning and two anonymous reviewers for numerous valuable remarks and suggestions. The orbit to generate the short data set was kindly provided by J. van den IJssel. Computing resources were provided by Stichting Nationale Computerfaciliteiten (NCF), grant SG-027.  相似文献   

9.
 A prerequisite for the success of future gravity missions like the European Gravity field and steady-state Ocean Circulation Explorer (GOCE) is a precise orbit determination (POD). A detailed simulation study has been carried out to assess the achievable orbit accuracy based on satellite-to-satellite tracking (SST) by the US global positioning system (GPS) and in conjunction the implications for gravity field determination. An orbit accuracy at the few centimeter level seems possible, sufficient to support the GOCE gravity mission and in particular its gravity gradiometer. Received: 21 January 2000 / Accepted: 4 July 2000  相似文献   

10.
 A technique for the analysis of low–low intersatellite range-rate data in a gravity mapping mission is explored. The technique is based on standard tracking data analysis for orbit determination but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline between the two satellites. This representation of the state parameters is exploited to allow the intersatellite range-rate analysis to benefit from information provided by other tracking data types without large simultaneous multiple-data-type solutions. The technique appears especially valuable for estimating gravity from short arcs (e.g. less than 15 minutes) of data. Gravity recovery simulations which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit, the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher-order terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs of the Gravity Recovery and Climate Experiment (GRACE) data are likely to improve parts of the geopotential spectrum by orders of magnitude. Received: 26 June 2001 / Accepted: 21 January 2002  相似文献   

11.
卫星重力梯度数据重力异常的精度分析   总被引:1,自引:0,他引:1  
徐翰  周强波 《测绘科学》2016,41(11):17-24
针对GOCE卫星确定的地球重力场模型精度的不确定性,对比分析GOCE位模型与多个不同重力场模型确定的重力异常,并将其分别与船测重力数据、南极航空重力数据、北极重力数据以及美国和中国台湾地面重力数据比较研究。结果表明:GOCE位模型的内符合精度最高,与地面重力观测数据符合最优;与船测以及航空重力测量符合相对较差、精度较低。研究表明,在一定精度前提下,GOCE卫星确定的重力数据可用于无人区,从而提高重力观测数据的覆盖率。  相似文献   

12.
R. Pail 《Journal of Geodesy》2005,79(4-5):231-241
In the recent design of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission, the gravity gradients are defined in the gradiometer reference frame (GRF), which deviates from the actual flight direction (local orbit reference frame, LORF) by up to 3–4°. The main objective of this paper is to investigate the effect of uncertainties in the knowledge of the gradiometer orientation due to attitude reconstitution errors on the gravity field solution. In the framework of several numerical simulations, which are based on a realistic mission configuration, different scenarios are investigated, to provide the accuracy requirements of the orientation information. It turns out that orientation errors have to be seriously considered, because they may represent a significant error component of the gravity field solution. While in a realistic mission scenario (colored gradiometer noise) the gravity field solutions are quite insensitive to small orientation biases, random noise applied to the attitude information can have a considerable impact on the accuracy of the resolved gravity field models.  相似文献   

13.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   

14.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

15.
The satellite missions CHAMP, GRACE, and GOCE mark the beginning of a new era in gravity field determination and modeling. They provide unique models of the global stationary gravity field and its variation in time. Due to inevitable measurement errors, sophisticated pre-processing steps have to be applied before further use of the satellite measurements. In the framework of the GOCE mission, this includes outlier detection, absolute calibration and validation of the SGG (satellite gravity gradiometry) measurements, and removal of temporal effects. In general, outliers are defined as observations that appear to be inconsistent with the remainder of the data set. One goal is to evaluate the effect of additive, innovative and bulk outliers on the estimates of the spherical harmonic coefficients. It can be shown that even a small number of undetected outliers (<0.2 of all data points) can have an adverse effect on the coefficient estimates. Consequently, concepts for the identification and removal of outliers have to be developed. Novel outlier detection algorithms are derived and statistical methods are presented that may be used for this purpose. The methods aim at high outlier identification rates as well as small failure rates. A combined algorithm, based on wavelets and a statistical method, shows best performance with an identification rate of about 99%. To further reduce the influence of undetected outliers, an outlier detection algorithm is implemented inside the gravity field solver (the Quick-Look Gravity Field Analysis tool was used). This results in spherical harmonic coefficient estimates that are of similar quality to those obtained without outliers in the input data.  相似文献   

16.
针对新一代卫星重力探测技术对地球重力场的频谱贡献问题,该文提出了一种基于GPS/水准数据获取多源卫星重力场模型频谱变化特征的方法。采用GPS/水准外符合检验,有效分析评估了多源卫星重力场模型在中国东、西部地区的精度水平。研究结果表明,以CHAMP、GRACE和GOCE卫星为代表的高-低卫星跟踪卫星、低-低卫星跟踪卫星和卫星重力梯度技术,对地球重力场的频谱贡献分别集中在600km以上的长波和中长波、300km以上的中波、200~350km之间的中短波部分。  相似文献   

17.
 A comparison was made between two methods for gravity field recovery from orbit perturbations that can be derived from global positioning system satellite-to-satellite tracking observations of the future European gravity field mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer). The first method is based on the analytical linear orbit perturbation theory that leads under certain conditions to a block-diagonal normal matrix for the gravity unknowns, significantly reducing the required computation time. The second method makes use of numerical integration to derive the observation equations, leading to a full set of normal equations requiring powerful computer facilities. Simulations were carried out for gravity field recovery experiments up to spherical harmonic degree and order 80 from 10 days of observation. It was found that the first method leads to large approximation errors as soon as the maximum degree surpasses the first resonance orders and great care has to be taken with modeling resonance orbit perturbations, thereby loosing the block-diagonal structure. The second method proved to be successful, provided a proper division of the data period into orbital arcs that are not too long. Received: 28 April 2000 / Accepted: 6 November 2000  相似文献   

18.
重力梯度为重力位的二阶导数,可以通过星载梯度仪进行观测。重力场球谐函数系数可以通过正则化方法由重力梯度算出。本文在对正则化方法分析的基础上提出了估计球谐函数系数正则解误差的方法,为我国今后发射重力梯度卫星提供技术准备。  相似文献   

19.
 The Cartesian moments of the mass density of a gravitating body and the spherical harmonic coefficients of its gravitational field are related in a peculiar way. In particular, the products of inertia can be expressed by the spherical harmonic coefficients of the gravitational potential as was derived by MacCullagh for a rigid body. Here the MacCullagh formulae are extended to a deformable body which is restricted to radial symmetry in order to apply the Love–Shida hypothesis. The mass conservation law allows a representation of the incremental mass density by the respective excitation function. A representation of an arbitrary Cartesian monome is always possible by sums of solid spherical harmonics multiplied by powers of the radius. Introducing these representations into the definition of the Cartesian moments, an extension of the MacCullagh formulae is obtained. In particular, for excitation functions with a vanishing harmonic coefficient of degree zero, the (diagonal) incremental moments of inertia also can be represented by the excitation coefficients. Four types of excitation functions are considered, namely: (1) tidal excitation; (2) loading potential; (3) centrifugal potential; and (4) transverse surface stress. One application of the results could be model computation of the length-of-day variations and polar motion, which depend on the moments of inertia. Received: 27 July 1999 / Accepted: 24 May 2000  相似文献   

20.
Accurate absolute GPS positioning through satellite clock error estimation   总被引:11,自引:0,他引:11  
 An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them. Received: 16 May 2000 / Accepted: 23 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号