首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ~?20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003?–?2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these results can be used for climate-modeling studies.  相似文献   

2.
We analyze eight XMM-Newton observations of the bright Narrow Line Seyfert 1 galaxy Arakelian 564(Ark 564). These observations, separated bye~6 days, allow us to look for correlations between the simultaneous ultraviolet(UV) emission(from th Optical Monitor) with not only the X-ray flux but also with different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous timescale arguments we rule out the possibility that the UV variation is due to the fluctuating accretion rate in the outer disk. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.  相似文献   

3.
Shustov  B. M. 《Astrophysics》2021,64(3):405-424
Astrophysics - The prospects for astronomical observations in the ultraviolet (UV) are discussed in a brief review and the areas in which UV astronomy is especially in demand are listed. Some...  相似文献   

4.
In this contribution, I consider those aspects of the modern star formation theory, which can be substantiated with observations in the UV band, paying special attention to early stages of molecular cloud formation and initial conditions for the chemical evolution of starless cores. I describe the main results of available diffuse cloud observations in the UV band, as well as prospective directions for future studies with the instrumentation of the World Space Observatory project.  相似文献   

5.
The World Space Observatory UltraViolet (WSO–UV) is an international space mission devoted to UV spectroscopy and imaging. The observatory includes a 170 cm aperture telescope capable of high-resolution and long slit low-resolution spectroscopy, and deep UV and optical imaging. The observatory is designed for observations in the ultraviolet domain where most of astrophysical processes can be efficiently studied with unprecedented capability.  相似文献   

6.
We have studied the panchromatic broad-band properties from the FUV to the MIR of a sample of 808 post-starburst galaxies. We find that in the optical and near-IR bands post-starburst galaxies (PSGs) form a remarkably uniform class of objects and that, on average, simple populations synthesis models (SSP) reproduce very well the SEDs of PSGs over a broad wavelength range, but not in the UV. We also find that, while the photometric variance in the optical and near-IR properties of the sample is small and comparable to the observational errors, both in the UV and the mid-IR the observed variance is much larger than the errors. We find a strong correlation between the UV fluxes and those in the mid-IR, indicating that the large variance in UV properties of PSGs could be related to a non-uniform distribution of dust covering the intermediate age populations. The disagreement between models and observations in the UV could be due to inadequate modelling; to the contribution of AGB and post-AGB stars; or to a non-uniform distribution of dust; possibly all three. Further progress in understanding this important class of galaxies, therefore, requires at the same time better modelling and better observations in the UV and mid-IR.  相似文献   

7.
8.
The success of the International Ultraviolet Explorer (IUE) first and then of the STIS and COS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the impact that observations at UV wavelengths had and are having on modern astronomy. Several discoveries in the exoplanet field have been done at UV wavelengths. Nevertheless, the amount of data collected in this band is still limited both in terms of observed targets and time spent on each of them. For the next decade, the post-HST era, the only large (2-m class) space telescope capable of UV observations will be the World Space Observatory–UltraViolet (WSO–UV). In its characteristics, the WSO–UV mission is similar to that of HST, but all observing time will be dedicated to UV astronomy. In this work, we briefly outline the major prospects of the WSO–UV mission in terms of exoplanet studies. To the limits of the data and tools currently available, here we also compare the quality of key exoplanet data obtained in the far-UV and near-UV with HST (STIS and COS) to that expected to obtain with WSO–UV.  相似文献   

9.
TAUVEX - Tel Aviv University UV Explorer is a space telescope that is currently being built in Israel, to be flown on board the Russian international sattelite SRG - Spectrum Roentgen Gamma, in late 1995 or early 1996. TAUVEX is an imager in the near UV spectral window. Its major goal is to make a survey of about 10% of the UV sky, in the range = 1350 - 3500Å. A successful operation of TAUVEX will partially fill an important gap in our recognition of the sky, namely the distribution and the nature of the celestial UV sources, which are still mostly unknown. TAUVEX will also operate as a fast multicolor photometer in its UV range of operation. TAUVEX is aligned in parallel to the common optical axix of all the other instruments on board SRG, most of which are telescopes and monitors for high energy radiation. SRG will be thus able to perform for the first time in history simultaneous astronomical observations in one and the same celestial body, that cover together 7 order of magnitude of the recorded radiation. The observations of TAUVEX can be greatly enhanced by ground base observations.  相似文献   

10.
We discuss the status of ultraviolet knowledge of Solar System objects. We begin with a short historical survey, followed by a review of knowledge gathered so far and of existing observational assets. The survey indicates that UV observations, along with data collected in other spectral bands, are necessary and in some cases essential to understand the nature of our neighbors in the Solar System. By extension, similar observations are needed to explore the nature of extrasolar planets, to support or reject astro-biology arguments, and to compose and test scenarios for the formation and evolution of planetary systems.We propose a set of observations, describing first the necessary instrumental capabilitites to collect these and outlining what would be the expected scientific return. We identify two immediate programmatic requirements: the establishment of a mineralogic database in the ultraviolet for the characterization of planetary, ring, satellite, and minor planet surfaces, and the development and deployment of small orbital solar radiation monitors. The first would extend the methods of characterizing surfaces of atmosphere-less bodies by adding the UV segment. The latter are needed to establish a baseline against which contemporaneous UV observations of Solar System objects must be compared.We identify two types of UV missions, one appropriate for a two-meter-class telescope using almost off-the-shelf technology that could be launched in the next few years, and another for a much larger (5–20 meter class) instrument that would provide the logical follow-up after a decade of utilizing the smaller facility.Michel Festou, our co-author and a very important contributor to this paper, passed away while this paper was being completed. We dedicate it to his memory.Deceased 11 May 2005  相似文献   

11.
Pre-main sequence stars are bright UV (UV) sources compared with their main sequence analogues. The source of this excess is the high energy processes associated with the physics of accretion/outflow during early stellar evolution. In this review, the main sources of UV excess are described as well as the most significant “unknowns” in the field. Special emphasis is made on the results from the last observations carried out with the Hubble Space Telescope and on the relevance of future dedicated monitoring programs with the World Space Observatory-UV.  相似文献   

12.
Our understanding of the important physical processes operating in the diffuse interstellar medium (ISM) has advanced in recent years from the analysis of high-resolution ultraviolet (UV) spectra obtained with the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectrograph Explorer (FUSE) and from high-fidelity simulations of the kinematics and energetics of the ISM. Nevertheless, much remains to be learned from observations with the Space Telescope Imaging Spectrograph (STIS) instrument on HST and spectrographs on the World Space Observatory (WSO). I will describe several major unanswered questions and suggest how future UV observations can answer these questions. I will also summarize the instrument requirements needed for a future UV spectroscopic mission and recommend how to achieve a successful mission.  相似文献   

13.
Portions of the Moon were observed by the Wisconsin Ultraviolet Photopolarimeter Experiment ( WUPPE ) on 1995 March 12, 14 and 17, and represent the first ultraviolet (UV) spectropolarimetric observations of the Moon. The polarimetric observations confirm that a change in the dominant scattering process occurs in the UV, changing from volume scattering in the near-UV to surface scattering in the far-UV. The data are investigated empirically. It is found that Umov's relationship holds when the polarization is perpendicular to the scattering plane. It is also found that the degree of polarization can be modelled by a phase-angle-dependent polarization modified by a wavelength-dependent depolarization factor. The scattering function for each observation is determined.  相似文献   

14.
We identify an important set of key areas where an advanced observational Ultraviolet capability would have major impact on studies of cosmology and Galaxy formation in the young Universe. Most of these are associated with the Universe at z < 3–4. We address the issues associated with Dark matter evidence in the local Universe and the impact of the Warm-Hot Intergalactic Medium WHIM on the local Baryon count. The motivations to make ultraviolet (UV) studies of supernovae (SNe) are reviewed and discussed in the light of the results obtained so far by means of IUE and HST observations. It appears that UV studies of SNe can, and do lead to fundamental results not only for our understanding of the SN phenomenon, such as the kinematics and the metallicity of the ejecta, but also for exciting new findings in Cosmology, such as the tantalizing evidence for “dark energy” that seems to pervade the Universe and to dominate its energetics. The need for additional and more detailed UV observations is also considered and discussed.Finally we show the enormous importance of the UV for abundance evolution in the Intergalactic Medium (IGM), and the importance of the He II studies to identify re-ionization epochs, which can only be done in the UV.  相似文献   

15.
Using WOOD's (1972) model we have analyzed two sets of photoelectric observations as yet unsolved, i.e., ROVITHIS ' and ROVITHIS -LIVANIOU's (1980) B and V light curves of the semi-detached system u Her and BROGLIA's (1961) three-colour observation of the detached system UV Leo. The observations of u Her have yielded solutions in which the secondary's radius exceeds its ROCHE lobe. On the other hand, our new elements of UV Leo confirm the most recent investigations, thus giving for the primary eclipse an unexpected occulatation solution which hardly permits a simple picture of UV Leo.  相似文献   

16.
本文总结最近从Xray 观测得到的关于宽吸收线类星体一些新结果, 我们和人家的结果都表明吸收物质的柱密度比原来从紫外估计的高三个量级, 在PG1411 + 442 中, 我们发现Xray 除了吸收成分外, 还有散射成分, 其量级和UV 吸收的剩余流量一致, 从而说明以前从UV 推断的结论是有问题的。此外, 对PG1126041 的研究表明从宽吸收线类星体到Seyfert 星系的窄本征吸收线其物理性质是连续过渡的。  相似文献   

17.
Mass loss rates for 9 LMC WR stars are determined using IUE, UV, and visible spectrophotometric observations. A good correlations of mass loss rate with effective temperature and luminosity is indicated by the data, in agreement with the theoretical predictions.  相似文献   

18.
We analyse a UV observation with FAUST in the direction of the North Galactic Pole. The region includes a cirrus cloud (G251.2+73.3) and a dark globule, and the FAUST image contains 75 UV sources. We discuss the UV source detection and their identification with optical counterparts. We use, for the first time, low-resolution spectral information as the primary means of identifying possible optical counterparts. This is complemented, and sometimes modified, by optical information available from existing data bases. The results are interpreted with the help of maps of the distribution of far-infrared emission and of the neutral hydrogen gas. We discuss the types of objects found, the degree of matching with the predictions of our UV Galaxy model, and the general behaviour of the Galactic UV extinction in this Milky Way part. We compare the UV results for this region with similar observations in the same neighbourhood, which are less affected by dust, and attempt to explain the peculiar distribution of UV magnitudes as a result of a peculiar distribution of foreground dust, which does not follow the accepted dust-to-gas relation.  相似文献   

19.
The rest-frame UV-to-optical flux ratio, which characterizes the "UV upturn" phenomenon, is potentially the most sensitive tracer of age in elliptical galaxies; models predict that it may change by orders of magnitude over the course of a few gigayears. In order to trace the evolution of the UV upturn as a function of redshift, we have used the far-UV camera on the Space Telescope Imaging Spectrograph to image the galaxy cluster CL 0016+16 at z=0.55. Our 25"x25" field includes four bright elliptical galaxies, spectroscopically confirmed to be passively evolving cluster members. The weak UV emission from the galaxies in our image demonstrates that the UV upturn is weaker at a look-back time approximately 5.6 Gyr earlier than our own, as compared to measurements of the UV upturn in cluster E and S0 galaxies at z=0 and z=0.375. These images are the first with sufficient depth to demonstrate the fading of the UV upturn expected at moderate redshifts. We discuss these observations and the implications for the formation history of galaxies.  相似文献   

20.
The Cassini Imaging Science Subsystem (ISS) and Composite Infrared Spectrometer (CIRS) reported a North Equatorial Belt (NEB) wave in Jupiter's atmosphere from optical images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] and thermal maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135], respectively. The connection between the two waves remained uncertain because the two observations were not simultaneous. Here we report on simultaneous ISS images and CIRS thermal maps that confirm that the NEB wave shown in the ISS ultraviolet (UV1) and strong methane band (MT3) images is correlated with the thermal wave in the CIRS temperature maps, with low temperatures in the CIRS maps (upwelling) corresponding to dark regions in the UV1 images (UV-absorbing particles) and bright regions in the MT3 images (high clouds and haze). The long period of the NEB wave suggests that it is a planetary (Rossby) wave. The combined observations from the ISS and CIRS are utilized to discuss the vertical and meridional propagation of the NEB wave, which offers a possible explanation for why the NEB wave is confined to specific latitudes and altitudes. Further, the ISS UV1 images reveal a circumpolar wave centered at 48.5° S (planetocentric) and probably located in the stratosphere, as suggested by the ISS and CIRS observations. The simultaneous comparison between the ISS and CIRS also implies that the large dark oval in the polar stratosphere of Jupiter discovered in the ISS UV1 images [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547] is the same feature as the warm regions at high northern latitudes in the CIRS 1-mbar temperature maps [Flasar, F.M., and 39 colleagues, 2004. Nature 427, 132-135]. This comparison supports a previous suggestion that the dark oval in the ISS UV1 images is linked to auroral precipitation and heating [Porco, C.C., and 23 colleagues, 2003. Science 299, 1541-1547].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号