首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Kirchhoff-Helmholtz (KH) integration has been used to model the reflected and the diving waves from an interface with a positive velocity gradient. The modelling is carried out for a spherical boundary and for a sinusoidal topography with a long-scale wavelength.
An artefact, which is a major problem in modelling the seismic response using the KH integration, has been reduced by introducing a Hilbert transform sign manipulation. Cleaner synthetic seismograms with correct amplitudes have been produced by this method. A discretization in larger surface elements has been made possible by introducing a smoothing factor that suppresses the noise that normally follows the constructed signal if a large element size is taken.  相似文献   

3.
4.
5.
6.
We compare three numerical methods to model the sea surface interaction in a marine seismic reflection experiment (the frequencies considered are in the band 10–100 Hz): the finite-difference method (FDM), the spectral element method (SEM) and the Kirchhoff method (KM). A plane wave is incident at angles of 0° and 30° with respect to the vertical on a rough Pierson–Moskowitz surface with 2 m significant wave height and the response is synthesized at 6, 10 and 50 m below the average height of the sea surface. All three methods display an excellent agreement for the main reflected arrival. The FDM and SEM also agree very well all through the scattered coda. The KM shows some discrepancies, particularly in terms of amplitudes.  相似文献   

7.
8.
Summary . In this paper the accuracy of velocity-depth profiles derived by matching WKBJ seismograms to observations is quantitatively evaluated. Seismograms computed with the WKBJ method are generally quite reliable but possess predictable, systematic inaccuracies in the presence of strong velocity gradients. The effects of these inaccuracies on models derived through WKBJ waveform inversion are studied, using reflectivity seismograms as 'data'. The velocity structure used is an oceanic lithosphere model that contains several transition regions separated by relatively homogeneous layers, producing partially-reflected reverberations in the reflectivity synthetics that are absent from the WKBJ seismograms. The inversion incorporates the 'jumping' strategy to solve for the smoothest models consistent with the data. We find these solutions to be independent of the starting model and to have a stable basic structure that agrees well with the correct model. The differences, everywhere less than a seismic wavelength, depend on the frequency content of the seismograms. Reverberations in the reflectivity seismograms that are well separated from WKBJ arrivals are treated as 'noise' in the inversion.  相似文献   

9.
10.
11.
New multichannel seismic reflection data were collected over a 565 km transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350 km of the profile: (1) continental crust; (2) transitional basement and (3) oceanic crust. Continental crust thins over a wide zone (∼160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastwards beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landwards by a basement high that may consist of serpentinized peridotite and seawards by a pair of basement highs of unknown crustal origin. Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle, although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landwards of magnetic anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ∼138 Ma (Valanginian) in the south (southern Newfoundland Basin) to ∼125 Ma (Barremian–Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.  相似文献   

12.
13.
14.
15.
16.
17.
Seismic traveltimes and amplitudes in reflection-seismic data show different dependences on the geometry of reflection interfaces, and on the variation of interval velocities. These dependences are revealed by eigenanalysis of the Hessian matrix, defined in terms of the Fréchet matrix and its adjoint associated with different norms chosen in the model space. The eigenvectors and eigenvalues of the Hessian clearly show that for reflection tomographic inversion, traveltime and amplitude data contain complementary information. Both for reflector-geometry and for interval-velocity variations, the traveltimes are sensitive to the model components with small wavenumbers, whereas the amplitudes are more sensitive to the components with high wavenumbers. The model resolution matrices, after the rejection of eigenvectors corresponding to small eigenvalues, give us some insight into how the addition of amplitude information could potentially contribute to the recovery of physical parameters.
In order to cooperatively invert seismic traveltimes and amplitudes simultaneously, we propose an empirical definition of the data covariance matrix which balances the relative sensitivities of different types of data. We investigate the cooperative use of both data types for, separately, interface-geometry and 2-D interval-velocity variations. In both cases we find that cooperative inversions can provide better solutions than those using traveltimes alone. The potential benefit of including amplitude-data constraints in seismic-reflection traveltime tomography is therefore that it may be possible to resolve the known ambiguity between the reflector-depth uncertainty and the interval-velocity uncertainty better.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号