首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper treats the dynamic response of a multilayered transversely isotropic fluid saturated poroelastic half-space under surface time-harmonic traction. The governing system of partial differential equations is uncoupled with the use of a set of physically meaningful and complete potential functions that decompose different body waves in a saturated poroelastic transversely isotropic medium. After expressing the equations in the Hankel-Fourier domain, a proper algebraic factorization is applied to generate reflection and transmission matrices for decomposed waves. All responses including displacements, stresses, and pore fluid pressure for both general patch load and point load are presented in the form of semi-infinite line integrals. The verification of the method is confirmed with the degeneration of the solutions presented here to the existing solutions for dried both homogeneous and multilayered elastic half-spaces as well as poroelastic half-space. Selected numerical results are depicted to investigate the effects of layering and pore pressure on responses of a transversely isotropic poroelastic medium. The load distribution effects are studied by comparison of the patch and point load responses. Also, resonance notion and effective parameters on this phenomenon such as layering system and anisotropy contrast are discussed. Significant influence of materials and layering configuration on number and amplitude of resonances depicted through the numerical evaluation.  相似文献   

2.
卢正  姚海林  刘干斌  骆行文 《岩土力学》2010,31(7):2309-2316
基于Biot波动理论和广义热弹性理论,对简谐线源荷载(力荷载和热荷载)作用下的热-流-固耦合地基的动力响应问题进行了研究。将地基看成是均质各向同性、完全饱和的多孔半空间介质,利用无量纲化和Fourier变换方法对热-流-固耦合控制方程进行简化,得到了变换域内应力分量、位移分量、温度分布及超孔隙水压力的一般解,并利用Fourier逆变换得到了相应的积分形式解答。通过数值计算对按热-流-固耦合理论、饱和多孔弹性理论和热弹性理论得到的结果进行了比较,同时分析了热-流-固耦合条件下热荷载激振频率对竖向应力、竖向位移、温度分布以及超孔隙水压力的影响。  相似文献   

3.
刘干斌  姚海林  杨洋  卢正 《岩土力学》2007,28(9):1784-1788
通过对Biot波动方程的修正,得到考虑热-水-力学耦合效应的多孔弹性介质动力响应的控制方程,研究了简谐均布荷载作用下地基土体的热-水-力耦合动力响应问题。利用Fourier变换技术,得到地基中的应力、位移和孔隙水压力积分形式的解答。利用Fourier逆变换得到数值结果,分析了热-水-力学耦合条件下地基土体中温度增量、应力、位移和孔隙水压力响应的分布,并讨论了热源输入的影响, 结果表明:应力、位移和孔隙水压力随 的增大而有一定的减小。  相似文献   

4.
This paper is dedicated to study the dynamic response of a thin‐plate resting on a layered poroelastic half‐space under a moving traffic load. Based on the dynamic poroelastic theory of Biot, the general solutions of the homogeneous poroelastic foundation are obtained by Fourier translation. By using the transmission and reflection matrices method in the frequency domain, the equivalent stiffness of the layered poroelastic half‐space is presented. Kirchhoff's hypotheses are applied to obtain the vertical displacement of the thin plate. By using the inverse Fourier transform, the time domain solution is obtained. As an example of three layers, the influences of the load velocity, the material properties of poroelastic layers, and the flexural rigidity of the plate on the response of the pavement system are examined. Analyses show that a soft intermediate layer results in the significant increase of vertical displacement of road pavement. Comparison with the existing work validates the present model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an investigation of the steady-state response of pavement systems subjected to a moving traffic load. The traffic loads are simulated by four rectangular load pressures, and the rigid and flexible pavement systems are regarded as an infinite plate resting on a poroelastic half-space soil medium. The contact surface between the plate and the poroelastic half-space is assumed to be smooth and fully permeable. Kirchhoff small-deflection thin-plate theory is employed to analyze the plate, while Biot’s fully dynamic poroelastic theory is used to characterize the poroelastic half-space. The frequency wave-number domain solution of the pavement system is obtained by the compatibility condition between the plate and the poroelastic half-space. By applying the inverse fast Fourier transform, the time domain solution is obtained. Also, the influences of the load speed, the permeability of the soil, and the flexural rigidity of the plate on the response of the pavement system are investigated. The numerical results show that the influences of these parameters on the dynamic response of the pavement system are significant.  相似文献   

6.
王进廷  张楚汉  金峰 《岩土力学》2007,28(10):2065-2070
采用解析法,以弹性半空间-淤砂层-理想流体层为对象,分别将淤砂层模拟为固体介质和流体介质,分析了平面P波入射时上层理想流体的动力反应特性。通过算例分析,比较了将淤砂层模拟为弹性固体、黏弹性固体、理想流体和黏性流体介质时与将淤砂层模拟为两相多孔介质时计算结果的差异。研究表明当渗透系数很小时,多孔介质可以近似简化为黏弹性固体,甚至线弹性固体。这一分析研究对于在高坝-库水-淤砂-地基系统地震反应分析的数值模型中采用合理的淤砂层模型,提高计算效率具有重要参考意义,而且还可以用于校核数值模型的合理性。  相似文献   

7.
The thermomechanical responses of a porous elastic medium subjected to time harmonic loads (normal force and thermal source) are investigated analytically in the context of generalised thermoelastic theory with one relaxation time. The material of the foundation, obeying Biot’s dynamic poroelastic theory, is idealised as a uniform, fully saturated poroelastic half-space stratum. The coupled governing equations are established based on Biot’s dynamic poroelastic theory and on generalised thermoelastic theory. Assuming the disturbances to be harmonically time dependent, the general solutions of stress, displacement, temperature distribution and excess pore water pressure are deduced using the Fourier transform, and the transformed solutions are numerically inverted. The differences among the coupled thermo-hydro-mechanical dynamic model (THMD), the hydro-mechanical dynamic model (HMD) and the thermo-elastic dynamic model (TMD) are discussed. In addition, the effects of the thermal loading frequency on the displacement, stress, temperature distribution and excess pore water pressure components are analysed in the numerical results.  相似文献   

8.
根据Biot理论,利用已有的传递、透射矩阵法得到层状饱和土体内部受竖向圆形分布荷载作用下的基本解,再由Muki虚拟桩法,建立了频域内层状土-桩的第二类Fredholm积分方程。通过离散方法求解积分方程,得到了评价隔振效果的振幅比。与已知文献结果比较,验证了方法的正确性。数值结果表明:对于同种类型的振源,采用相同的隔振系统,在上软下硬的多层土体中的隔振效果比在上硬下软的土层中要好。采用较长的桩或刚度较大的桩,或桩之间的距离加密都可得到好的隔振效果。  相似文献   

9.
丁伯阳  宋宥整 《岩土力学》2019,40(2):474-480
一直以来,由Biot孔隙弹性动力方程得到的饱和土地下源Green函数都是u-w形式(u为固相介质位移,w为流相相对于固相的平均位移)。应用两相介质纵波解耦理论,得到了饱和土半空间地下点源荷载的u-P形式(P为孔压)Green函数频域解答;克服了u-w形式Green函数在边界元(BEM)积分时的增根影响。再由Hankel反演,结合Somigliana表象积分,完成BEM计算。并以计算结果分析了地下集中力作用时,饱和土位移、孔压、排水量等动力特性,这对地铁等交通工程、地震工程、土-结构动力相互作用(SSI)的响应计算都具有较重要应用价值。  相似文献   

10.
This paper considers the transient response of a pressurized long cylindrical cavity in an infinite poroelastic medium. To obtain transient solutions, Biot's equations for poroelastodynamics are specialized for this problem. A set of exact general solutions for radial displacement, stresses, pore pressure and discharge are derived in the Laplace transform space by using analytical techniques. Solutions are presented for three different types of prescribed transient radial pressures acting on the surface of a permeable as well as an impermeable cavity surface. Time domain solutions are obtained by inverting Laplace domain solutions using a reliable numerical scheme. A detailed parametric study is presented to illustrate the influence of poroelastic material parameters and hydraulic boundary conditions on the response of the medium. Comparisons are also presented with the corresponding ideal elastic solutions to portray the poroelastic effects. It is noted that the maximum radial displacement and hoop stress at the cavity surface are substantially higher than the classical static solutions and differ considerably from the transient elastic solutions. Time histories and radial variations of displacement, hoop stress, pore pressure and fluid discharge corresponding to a cavity in two representative poroelastic materials are also presented.  相似文献   

11.
曾晨  孙宏磊  蔡袁强 《岩土力学》2014,35(4):1147-1156
研究了全空间饱和土体中圆形衬砌隧道在径向简谐点荷载作用下的三维动力响应,将衬砌用无限长圆柱壳来模拟,土体用Biot饱和多孔介质模型来模拟,引入两类势函数来表示土骨架的位移和孔隙水压力,并利用修正Bessel方程来求解各势函数,结合边界条件,得到频率-波数域内衬砌和土骨架位移、孔隙水压力的解答,最后进行Fourier逆变换得到时间-空间域内的响应。通过算例分析了荷载振动频率和土体渗透性对土体和衬砌位移响应及土体孔压的影响。结果表明,饱和土体和弹性土体的位移响应具有明显区别。随着荷载频率的增大,土体和隧道位移幅值减小,土体孔压幅值增大;随着土体渗透性增大,土体位移及孔压幅值减小。  相似文献   

12.
In this study, the dynamic response of a poroelastic half‐space to a point fluid sink is investigated using Biot's dynamic theory of poroelasticity. Based on Biot's theory, the governing field equations are re‐formulated in frequency domain with solid displacement and pore pressure. In a cylindrical coordinate system, a method of displacement potentials for axisymmetric displacement field is proposed to decouple the Biot's field equations to three scalar Helmholtz equations, and then the general solution to axisymmetric problems are obtained. The full‐space fundamental singular solution for a point sink is also derived using potential methods. The mirror‐image method is finally applied to construct the fundamental solution for a point sink buried in a poroelastic half‐space. Furthermore, a numerical study is conducted for a rock, that is, Berea sandstone, as a representative example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
移动荷载下黏弹性半空间体上双层板的动力响应   总被引:1,自引:0,他引:1  
李皓玉  齐月芹  刘进 《岩土力学》2013,34(Z1):28-34
采用黏弹性半空间体上无限大双层板模型模拟路面结构,通过三重Fourier积分变换得到单位脉冲荷载作用下路面动力响应的Green函数。根据线性系统的叠加原理,利用广义Duhamel积分推导出移动荷载作用下路面动力响应的解析解。采用自适应Simpson法编制了计算奇异、振荡函数的广义积分计算程序,完成了路面动力响应从波数-频率域到时间-空间域的转换。结合算例,对移动荷载作用下路面的振动规律进行研究,讨论上、下层板厚度和板材料的弹性模量对路面动力响应的影响,明确了路面结构的振动特性,研究结果可为路面结构的设计、施工提供理论指导。  相似文献   

14.
王小岗 《岩土力学》2008,29(3):685-690
基于提出的横观各向同性饱和多孔介质Biot波动方程的一般解,研究了饱和半空间地基在竖向点源简谐激振荷载作用下地表振动的衰减特征,分析了激振频率以及横观各向同性饱和土介质的各向异性参数和孔隙渗透系数对地表振动特征的影响。计算结果表明,低频和高频激振时,地表位移衰减特性存在明显差异;在饱和土的各向异性参数中,纵向和水平方向动态渗透系数比值和刚度系数比值对地表位移衰减影响最大,这也说明采用各向同性饱和介质的动力学模型不能准确地描述具有明显各向异性特性的饱和土地基的动力特性。  相似文献   

15.
The complete solution is presented for the transient effects of pumping fluid from a point sink embedded in a saturated, porous elastic half-space. It is assumed that the medium is homogeneous and isotropic with respect to its elastic properties and homogeneous but anisotropic with respect to the flow of pore fluid. The soil skeleton is modelled as a linear elastic material obeying Hooke's law, while the pore fluid is assumed to be incompressible with its flow governed by Darcy's law. The solution has been evaluated for a particular value of Poisson's ratio of the solid skeleton, i.e. 0.25, and the results have been presented graphically in the form of isochrones of excess pore pressure and surface profile for the half-space. The solutions presented may have application in practical problems such as dewatering operations in compressible soil and rock masses.  相似文献   

16.
This work addresses in‐plane pressure P and vertically polarized shear SV seismic wave propagation in a finite, laterally inhomogeneous, multilayered poroelastic geological region resting on the homogeneous elastic half‐space. The particular approach followed here is based on a combination of the (i) viscoelastic approximation (isomorphism) to Biot's equations of dynamic poroelasticity and on the (ii) boundary integral equation method (BIEM) using frequency‐dependent fundamental solutions of the governing wave equations. The problem is formulated under plane strain conditions and time‐harmonic motions are assumed. Validation of the viscoelastic isomorphism and verification of the BIEM is done by solution of benchmark examples. These simulation studies reveal that the proposed methodology is able to depict a sensitivity of the seismic signals recovered to the following parameters: (i) poroelastic properties of fluid saturated layers; (ii) lateral geological inhomogeneity; (iii) surface topography and (iv) frequency content and direction of the incident wave. It is concluded that the combination of viscoelastic isomorphism with BIEM software provides an effective numerical tool for evaluating site‐effect phenomena in multilayered, fluid saturated geological regions with complex geometry. The numerical results obtained demonstrate that dynamic poroelasticity interacting with other physical peculiarities of the Earth's surface layers, such as lateral heterogeneity, material properties along the wave path, local geological profile and type of elastic wave, gives rise to complex seismic signals on the free surface at the site of interest. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an indirect boundary integral equation method for analysis of quasi-static, time-harmonic and transient boundary value problems related to infinite and semi-infinite poroelastic domains. The present analysis is based on Biot's theory for poroelastodynamics with fluid viscous dissipation. The solution to a given boundary value problem is reduced to the determination of intensities of forces and fluid sources applied on an auxiliary surface defined interior to the surface on which the boundary conditions are specified. A coupled set of integral equations is established to determine the intensities of forces and fluid sources applied on the auxiliary surface. The integral equations are solved numerically in the Laplace domain for quasi-static and transient problems, and in the frequency domain for time-harmonic excitations. The kernel functions of the integral equation correspond to appropriate Green's functions for a poroelastic full space or half-space. The convergence and numerical stability of the present scheme are established by considering a number of bench mark problems. The versatility of the present method is demonstrated by studying the quasi-static response of a rigid spheroidal anchor, and time-harmonic and transient response of a rigid semi-circular tunnel.  相似文献   

18.
The problem of the dynamic responses of a semi‐infinite unsaturated poroelastic medium subjected to a moving rectangular load is investigated analytical/numerically. The dynamic governing equations are obtained with consideration of the compressibility of solid grain and pore fluid, inertial coupling, and viscous drag as well as capillary pressure in the unsaturated soil, and they can be easily degraded to the complete Biot's theory. Using the Fourier transform, the general solution for the equations is derived in the transformed domain, and then a corresponding boundary value problem is formulated. By introducing fast Fourier transform algorithm, the unsaturated soil vertical displacements, effective stresses, and pore pressures induced by moving load are computed, and some of the calculated results are compared with those for the degenerated solution of saturated soils and confirmed. The influences of the saturation, the load speed, and excitation frequency on the response of the unsaturated half‐space soil are investigated. The numerical results reveal that the effects of these parameters on the dynamic response of the unsaturated soil are significant.  相似文献   

19.
The fully coupled Biot quasi-static theory of linear poroelasticity is used to study the consolidation of a poroelastic half-space caused by axisymmetric surface loads. The fluid and solid constituents of the poroelastic medium are compressible and its permeability in the vertical direction is different from its permeability in the horizontal direction. An analytical solution of the governing equations is obtained by taking the displacements and the pore pressure as the basic state variables and using a combination of the Laplace and Hankel transforms. The problem of an axisymmetric normal load is discussed in detail. An explicit analytical solution is obtained for normal disc loading. Detailed numerical computations reveal that the anisotropy in permeability as well as the compressibilities of the fluid and solid constituents of the poroelastic medium have significant effects on the consolidation of the half-space. The anisotropy in permeability may accelerate the consolidation process and may lead to a dilution in the theoretical prediction of the Mandel-Cryer effect. The compressibility of the solid constituents may also accelerate the consolidation process.  相似文献   

20.
An exact steady‐state closed‐form solution is presented for coupled flow and deformation of an axisymmetric isotropic homogeneous fluid‐saturated poroelastic layer with a finite radius due to a point sink. The hydromechanical behavior of the poroelastic layer is governed by Biot's consolidation theory. Boundary conditions on the lateral surface are specifically chosen to match the appropriate finite Hankel transforms and simplify the transforms of the governing equations. Ordinary differential equations in the transformed domain are solved, and then the analytical solutions in the physical space for the pore pressure and the displacements are finally obtained by using finite Hankel inversions. The analytical solutions at some special locations such as the top and bottom surfaces, lateral surface, and the symmetrical axis are given and analyzed. And a case study for the consolidation of a water‐saturated soft clay layer due to pumping is conducted. The analytical solution is verified against the finite element solution. Meanwhile, an analysis of coupled hydromechanical behavior is carried out herein. The presented analytical solution is an exact solution to the practical poroelastic problem within an axisymmetric finite layer. It can provide us a better understanding of the poroelastic behavior of the finite layer due to fluid extraction. Besides, it can be applied to calibrate numerical schemes of axisymmetric poroelasticity within finite domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号