共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a fracture mapping (FM) approach combined with the extended finite element method (XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures are not part of the finite element mesh. A key feature of FM‐XFEM is its ability to model discontinuities in the domain independently of the computational mesh. The proposed FM approach is a continuum‐based approach that is used to model the flow interaction between the porous matrix and existing fractures via a transfer function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture flow model, the fracture representation is not meshed along with the computational domain. Consequently, the method is able to determine the influence of fractures on fluid flow within a fractured domain without the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment functions are added to the standard finite element approximation to adequately resolve discontinuous fields within the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
A finite element method for modeling coupled flow and deformation in porous fractured media 下载免费PDF全文
Ahmad Pouya 《国际地质力学数值与分析法杂志》2015,39(16):1836-1852
Modeling the flow in highly fractured porous media by finite element method (FEM) has met two difficulties: mesh generation for fractured domains and a rigorous formulation of the flow problem accounting for fracture/matrix, fracture/fracture, and fracture/boundary fluid mass exchanges. Based on the recent theoretical progress for mass balance conditions in multifractured porous bodies, the governing equations for coupled flow and deformation in these bodies are first established in this paper. A weak formulation for this problem is then established allowing to build a FEM. Taking benefit from recent development of mesh‐generating tools for fractured media, this weak formulation has been implemented in a numerical code and applied to some typical problems of hydromechanical coupling in fractured porous media. It is shown that in this way, the FEM that has proved its efficiency to model hydromechanical phenomena in porous media is extended with all its performances (calculation time, couplings, and nonlinearities) to fractured porous media. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
基于混合物理论孔隙-裂隙岩体的双重孔隙介质水力耦合计算的微分方程,利用伽辽金有限元法提出了相应的有限元公式,并基于岩体分类指标(RQD,RMR)提出了与岩体应变状态相关的渗透系数计算公式。编制了裂隙岩体双重介质流固耦合的2-D有限元程序,给出的验证算例表明,该程序是合理和实用的。同时将该程序用于隧道开挖的模拟计算,探讨渗流效应对开挖隧道围岩变形与渗流场的影响。计算结果表明,在隧道设计中不考虑渗流的影响是偏于不安全的。 相似文献
4.
One of the major causes of instability in geotechnical structures such as dikes or earth dams is internal erosion, an insidious process that occurs over a long period of time. Research on this topic is still fairly new and much more needs to be understood in order to solve the problems posed by this phenomenon. This paper proposes a hydromechanical model based on porous continuous medium theory to assess how internal erosion impacts the safety of earthen structures. The saturated soil is considered as a mixture of four interacting constituents: soil skeleton, erodible fines, fluidized fine particles, and fluid. The detachment and transport of the fine particles are described by a mass exchange model between the solid and the fluid phases. An elastoplastic constitutive model for sand-silt mixtures has been developed to monitor the effect of the evolution of both porosity and fines content induced by internal erosion upon the behavior of the soil skeleton. The model has been numerically solved with the finite element method. It has then been applied to the specific case study of a dike foundation subjected to internal erosion induced by the presence of a karstic cavity beneath the alluvium layer. The numerical results show the onset of erosion, the time-space evolution of the eroded zone, and the hydromechanical response of the soil constituting the dike, all of which highlights the effects of the cavity location, the erosion rate, and the fines content. 相似文献
5.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
7.
Behnam V. Damirchi Marcelo R. Carvalho Luís A. G. Bitencourt Osvaldo L. Manzoli Daniel Dias‐da‐Costa 《国际地质力学数值与分析法杂志》2021,45(1):83-107
A new discrete fracture model is introduced to simulate the steady‐state fluid flow in discontinuous porous media. The formulation uses a multi‐layered approach to capture the effect of both longitudinal and transverse permeability of the discontinuities in the pressure distribution. The formulation allows the independent discretisation of mesh and discontinuities, which do not need to conform. Given that the formulation is developed at the element level, no additional degrees of freedom or special integration procedures are required for coupling the non‐conforming meshes. The proposed model is shown to be reliable regardless of the permeability of the discontinuity being higher or lower than the surrounding domain. Four numerical examples of increasing complexity are solved to demonstrate the efficiency and accuracy of the new technique when compared with results available in the literature. Results show that the proposed method can simulate the fluid pressure distribution in fractured porous media. Furthermore, a sensitivity analysis demonstrated the stability regarding the condition number for wide range values of the coupling parameter. 相似文献
8.
对于超固结黏土和密实砂土等软化材料或非关联塑性材料组成的地基、边坡及挡土墙墙后土体,在其破坏过程中,会产生应变局部化现象,使得控制方程的类型发生改变,从而导致出现数值解不惟一和解的网格相关性等现象。为了克服这些数值困难,基于强间断分析方法,及单元内嵌不连续面的有限元模型,对地基、土坡、墙后土体的渐进破坏过程进行了数值模拟。计算结果表明,单元内嵌不连续面模型可以有效地模拟土工结构失稳破坏过程,并且能够明显地改善采用常规有限元方法所产生的网格尺寸相关性问题。这一方法可作为传统极限平衡法进行稳定分析、承载力分析的有益补充。 相似文献
9.
Modelling of coupled fluid‐mechanical problems in fractured geological media using enriched finite elements 下载免费PDF全文
Jose Roberto Silvestre Euripedes do Amaral Vargas Jr. Luiz Eloy Vaz Antonio Claudio Soares 《国际地质力学数值与分析法杂志》2015,39(10):1104-1140
Geological environments, such as petroleum reservoirs, normally exhibit physical discontinuities, for example, fractures and faults. Because of the reduced thickness of these discontinuities, finite element formulations with strong discontinuity have been applied to the numerical modelling of geological environments. Until now, two relevant characteristics of petroleum reservoirs have not been addressed by these formulations. The first is the pore pressure jump in the direction normal to a discontinuity in a fluid‐mechanical coupling condition, which is present primarily in sealing faults owing to the contrast of permeability with the porous medium. The absence of this jump can affect the prediction of the deformability of a physical discontinuity. Furthermore, reservoir models frequently use coarse meshes. Thus, the method used to evaluate the pore pressure in the discontinuity may exhibit a strong dependence relative to the mesh refinement. Based on these characteristics, in this study, a formulation of an enriched finite element for application to coupled fluid‐mechanical problems with pre‐existing physical discontinuities saturated by a single fluid is presented. The formulation employs discontinuous interpolation functions and enables the reproduction of jumps of displacement and pore pressure associated with a discontinuity inside the element without the need to discretise it. An approximation to estimate the pore pressure in the discontinuity was developed, one which seeks to minimise the influence of refinement. The element's response is verified by comparison with a one‐dimensional analytical solution and simple examples that are simulated using commercial software. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Based on the theory of double-porosity, a novel mathematical model for multiphase fluid flow in a deforming fractured reservoir is developed. The present formulation, consisting of both the equilibrium and continuity equations, accounts for the significant influence of coupling between fluid flow and solid deformation, usually ignored in the reservoir simulation literature. A Galerkin-based finite element method is applied to discretize the governing equations both in the space and time domain. Throughout the derived set of equations the solid displacements as well as the fluid pressure values are considered as the primary unknowns and may be used to determine other reservoir parameters such as stresses, saturations, etc. The final set of equations represents a highly non-linear system as the elements of the coefficient matrices are updated during each iteration in terms of the independent variables. The model is employed to solve a field scale example where the results are compared to those of ten other uncoupled models. The results illustrate a significantly different behaviour for the case of a reservoir where the impact of coupling is also considered. © 1997 by John Wiley & Sons, Ltd. 相似文献
11.
Hybrid time integration and coupled solution methods for nonlinear finite element analysis of partially saturated deformable porous media at small strain 下载免费PDF全文
The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Omid Ghaffaripour Golnaz A. Esgandani Arman Khoshghalb Babak Shahbodaghkhan 《国际地质力学数值与分析法杂志》2019,43(11):1919-1955
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils. 相似文献
14.
边坡稳定性分析的极限平衡法与有限元法(FEM)的耦合分析法,首先利用有限元法分析获得边坡岩土体的整体应力场,在此基础上利用极限平衡法进行边坡的稳定系数求解。该方法既反映了边坡的稳定和变形之间的关系,又克服了极限平衡法与有限元法的不足,使二者的优点相互补充,获得的稳定系数基于极限平衡理论体系,可以同传统的稳定系数评价体系接轨。以西安市雁塔区余王扁削坡后边坡为例,用稳定性耦合分析法对其进行了稳定性分析,并把分析结果与各种极限平衡法的计算结果进行了比较,证明了耦合分析方法的可靠性和可行性。 相似文献
15.
16.
An alternative approach for quasi‐static large deformation analysis of saturated porous media using meshfree method 下载免费PDF全文
An alternative coupled large deformation formulation combined with a meshfree approach is proposed for flow–deformation analysis of saturated porous media. The formulation proposed is based on the Updated Lagrangian (UL) approach, except that the spatial derivatives are defined with respect to the configuration of the medium at the last time step rather than the configuration at the last iteration. In this way, the Cauchy stresses are calculated directly, rendering the second Piola–Kirchhoff stress tensor not necessary for the numerical solution of the equilibrium equations. Moreover, in contrast with the UL approach, the nodal shape function derivatives are calculated once in each time step and stored for use in subsequent iterations, which reduces the computational cost of the algorithm. Stress objectivity is satisfied using the Jaumann stress rate, and the spatial discretisation of the governing equations is achieved using the standard Galerkin method. The equations of equilibrium are satisfied directly, and the nonlinear parts of the system matrix are derived independent of the stresses of the medium resulting in a stable numerical algorithm. Temporal discretisation is effected based on a three‐point approximation technique that avoids spurious ripple effects and has second‐order accuracy. The radial point interpolation method is used to construct the shape functions. The application of the formulation and the significance of large deformation effects on the numerical results are demonstrated through several numerical examples. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
18.
裂隙岩体渗流耦合传热分析 总被引:2,自引:0,他引:2
以地下裂隙岩体在裂隙水—孔隙水和温度场之间耦合作用为研究对象,对热和流体流动控制方程采用有限容积数值方法进行离散求解,设置了六种裂隙水—孔隙水流速方案,给出了部分无量纲温度场,并分析了传热与流动原因。分析结果表明:岩体内裂隙水—孔隙水引发的热质迁移对裂隙岩体的温度场分布有重要影响;当裂隙岩体内发生地下裂隙水—孔隙水渗流、及热量的转移时,会产生渗流场、温度场之间的耦合作用;裂隙内水流渗透速度是影响岩体温度的主要因素,孔隙内水流渗透速度是影响岩体温度的次要因素,温差主要发生在裂隙水边界层处。 相似文献
19.
对饱和多孔介质提出了一个含溶混污染物输运(传质)过程的混合元方法,其中污染物输运过程数学模型包含了对流、机械逸散、分子弥散和吸附等机制。固相位移、应变和有效应力,孔隙水压力、压力空间梯度和Darcy速度,污染物浓度、浓度空间梯度和浓度流量在单元内均为独立变量分别插值。基于胡海昌-Washizu三变量广义变分原理,结合可以滤掉虚假振荡的特征线方法,推导出饱和土中水力-力学-传质耦合问题控制方程的单元弱形式,并导出了混合元计算公式。数值模拟证明了所提出的方法可以提供与传统4点积分方案同样精度,同时能够提高计算效率。 相似文献
20.
多孔介质中的流动问题,与孔隙介质的特性,含水量状态以及含水量的变化历史密切相关。基于毛细循环滞回理论模型,考虑含水量变化历史对土水特征关系的影响,在开发的U-DYSAC2有限元程序中进行了相应的数值实施。在试验给定的初边值条件下进行了非饱和渗流模拟分析,并将模拟结果与实测数据比较,表明在压力边界条件反复变化下,考虑滞回效应能获得更接近实测的结果,证实该模型在模拟各种循环变化条件下非饱和土渗流初边值问题的适用性与必要性。对入渗重分布反复变化条件下非饱和土柱流动的数值模拟表明,考虑滞回与不考虑滞回条件下,含水量、孔隙水压力和湿峰的迁移的预测在入渗后的重分布过程差异较大。考虑滞回效应时,土柱上部的脱湿速率、下部的吸湿速率比不考虑滞回时要低。从而证实了非饱和多孔介质中的土水状态依赖于含水量变化,而且强烈依赖于土体的水力路径变化。因此,循环边界条件变化下,毛细滞回效应在非饱和渗流模拟中的影响显著,必须加以考虑。 相似文献