首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 500 m sequence of horizontal lava flows forms the Gregory rift escarpment of the western rift shoulder between Lake Natron and Oldoinyo Lengai. A detailed volcanic stratigraphy of this >1.2 Ma evolution of the EAR in Northern Tanzania is presented. The sequence is formed by several distinct rock suites, with increasing alkalinity from base to top. Alkali olivine basalts of the Waterfall Sequence at the base are followed by a basanite series, and by a range of evolved nephelinites forming the upper part of the escarpment. Numerous dykes and Strombolian scoria deposits indicate local fissure eruptions as opposed to or in addition to more distant sources. Primitive compositions within each of the series indicate variable candidates for primary magmas. The composition of the basanite suite ranges from primitive mantle melts (high Mg#, Cr, Ni) to more evolved rocks, in particular hawaiites, generated by fractionation of olivine, pyroxene and magnetite. Inter-bedded within the basanite suite, one single olivine melilitite flow with high Mg# and abundant olivine and pyroxene megacrysts is the only primitive candidate for the nephelinite suite. However, in view of the large compositional gap and marked differences in incompatible element ratios, a relation between this flow and the nephelinites remains hypothetical. The variation within the evolved nephelinite series can be partly explained by fractionation of pyroxene, apatite, perovskite (and some nepheline), while magma mixing is indicated by zonation patterns of pyroxene. The most evolved nephelinite, however, differs significantly from all other nephelinites in major and trace elements. Thus the entire sequence is petrologically not a coherent evolution, rather the result of different mantle melts fractionating under variable conditions.Carved into the rift scarp of the study area west of Engare Sero is a young explosion crater, the Sekenge Crater. Sekenge Tuffs are olivine melilitites, similar to other craters and maars of the “Younger Extrusives” on the rift valley floor surrounding Oldoinyo Lengai. Further, still younger alkaline tuffs are found on the top of the rift shoulder.  相似文献   

2.
Contents of inorganic reduced forms of sulfur were determined in the oxygen-bearing waters of saline-soda Lake Doroninskoe. The vertical and annual distributions of individual species and total reduced sulfur have been studied. It was found that oxic zone ubiquitously contains reduced sulfur with contents: HS 0.002–3.86 mg/l, S0 0.002–0.129 mg/l, S0; 4+ 0.014–9.19 mg/l. Oxygen concentrations varied from 0 to 6.8 mg/l. These sulfur compounds show unsystematic vertical distribution, which during transitional season is controlled by intensity of bacterial processes.  相似文献   

3.
A 30,000 yr dinocyst and pollen record from the eastern equatorial Atlantic (off Cameroon) has been investigated in order to identify land–ocean linkages during the last deglacial transition. A strong correlation between the abundance of Brigantedinium spp. and the Ca/Fe ratio during the last glacial period suggests enhanced marine productivity in association with cool seawater temperatures and nutrient input linked to coastal upwelling and/or a proximal river mouth. Dry conditions are recorded on the adjacent continent with a significant representation of open vegetation indicators and the Afromontane taxon Podocarpus. After 17 cal ka BP these indicators register a sharp decline as a result of a climatic transition from the dry/cooler conditions of the last glacial period to the wetter/warmer conditions of the deglaciation. Simultaneously, dinocysts show a significant shift from dominant heterotrophs to an increasing abundance of autotrophs, reflecting warmer conditions. Significant changes are observed during the Younger Dryas, with a return to drier conditions and higher salinities. The start of the Holocene is marked by very low-salinity conditions, reflecting optimal monsoonal conditions over west equatorial Africa. The end of the African Humid Period is observed between 6 and 5 cal ka BP, followed by significant fluctuations in both terrestrial and oceanic proxies.  相似文献   

4.
Platinum group elements (PGE) and Re–Os isotopes of mantle peridotites in the Jinshajiang ophiolite (SW China) were investigated in this study, in order to cons...  相似文献   

5.
The analysis of the Sr and Nd isotopic composition in different granitoids of the Verkhisetsk, Shartash, Krasnopolsk, Petrokamensk, and Shabry massifs, which were successively formed in the island arc, continental marginal, and collisional geodynamic settings during the period from the Middle Devonian to the early Permian, revealed that 87Sr/86Sr0 values in them vary from 0.70331 to 0.70431 and εNd(t), from +1.9 to +6.2. The two-stage model Nd age of granitoids (938–629 Ma) indicates that their magma originates from material at least Neoproterozoic in age, not younger. The observed variations in the Nd model ages of granitoids and 87Sr/86Sr0 values provide grounds for assuming the primary heterogeneity of the source of granitoid melts.  相似文献   

6.
The study of bottom sediments of Lake Baikal recovered by submarine drilling at the Selenga–Buguldeika saddle (core VER93-2 st. 24GC) allowed us to reconstruct the climatic events in the Baikal region in the last 20–25 k.y. On the basis of the data on distribution of chemical elements in the core section, the mineral composition of sediments was calculated by the physicochemical modeling method. A study of how ratios of clay minerals changed in the section allowed us to identify the Pleistocene–Holocene boundary, Bølling–Allerød postglacial warming, and Late Dryas cooling. The calculated data on mineral composition of bottom sediments from the core VER93-2 demonstrate a good fit to the X-ray diffraction analysis results. The proposed approach can be used in calculation of mineral compositions of other sedimentary sequences with known chemical composition.  相似文献   

7.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

8.
Doklady Earth Sciences - An anomalous layer enriched with chemical elements indicating the presence of terrigenous matter was discovered in the sediment core of Zapovednoe Lake located 60 km from...  相似文献   

9.
In the work presented here, a Zr-oxide diffusive gradients in thin films (DGT) was used to monitor the release flux of phosphorus (P), ferrum (Fe), and arsenic (As) in the water–sediment interface of Aibi Lake—a typical shallow lake located in the arid regions of Northwest China. Results showed that: (1) In the water–sediments interface of Aibi Lake, the ranges (average values) of labile As, labile P, and labile Fe levels in DGTs are 3.846–101.840 (43.934) µg L?1, 0.006–0.232 (0.070) mg L?1, and 0.202–52.984 (15.832) mg L?1, respectively. Among 0–20 cm of the vertical profile there was a stable distribution of three elements, while below the interface as 0 cm–(??80) cm there were relatively large changes of these. (2) Fitting analysis showed that there were significant correlations between labile Fe and labile P, and labile As in four DGTs, which showed that in the water–sediments of Aibi Lake, Fe, P, and As are released simultaneously. (3) Combined with former research, we found that the redox of Fe3+ to Fe2+ may cause the release of P and As to the sediments and water body from the former Fe–P and Fe–As; the proportion of P/Fe of four DGTs was all relatively lower than 1, suggesting that the redox of Fe3+ caused the P to be released. (4) This research showed that the concentrations of P, Fe, and As of the water–sediments interface of the lake was obviously lower than that of the water body and sediments of Aibi Lake as well as others of central and eastern China. ZrO-DGT can accurately reflect the distribution of P, Fe, and As of Aibi Lake. These findings can provide initial verification for the use of ZrO-DGT technology in the research of elements at the water–sediment interface in lakes of Xinjiang Province in Northwest China.  相似文献   

10.
11.
TPost-orogenic intrusive complexes from the Sulu belt of eastern China consist of pyroxene monzonites and dioritic porphyrites. We report new U–Pb zircon ages, geochemical data, and Sr–Nd–Pb isotopic data for these rocks. Laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon analyses yielded a weighted mean 206Pb/238U age of 127.4 ± 1.2 Ma for dioritic porphyrites, consistent with crystallization ages (126 Ma) of the associated pyroxene monzonites. The intrusive complexes are characterized by enrichment in light rare earth elements and large ion lithophile elements (i.e. Rb, Ba, Pb, and Th) and depletion in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, P, and Ti), high (87Sr/86Sr)i ranging from 0.7083 to 0.7093, low ?Nd(t) values from ?14.6 to ? 19.2, 206Pb/204Pb = 16.65–17.18, 207Pb/204Pb = 15.33–15.54, and 208Pb/204Pb = 36.83–38.29. Results suggest that these intermediate plutons were derived from different sources. The primary magma-derived pyroxene monzonites resulted from partial melting of enriched mantle hybridized by melts of foundered lower crustal eclogitic materials before magma generation. In contrast, the parental magma of the dioritic porphyrites was derived from partial melting of mafic lower crust beneath the Wulian region induced by the underplating of basaltic magmas. The intrusive complexes may have been generated by subsequent fractionation of clinopyroxene, potassium feldspar, plagioclase, biotite, hornblende, ilmenite, and rutile. Neither was affected by crustal contamination. Combined with previous studies, these findings provide evidence that a Neoproterozoic batholith lies beneath the Wulian region.  相似文献   

12.
The organic matter content of marine sediments is often used to infer past changes in ocean conditions. However, the organic carbon pool preserved in coastal sediments is a complex mixture derived from different sources and may not reflect in situ processes. In this study, we combine taxonomic identification of reworked palynomorphs with pyrolysis organic geochemistry and reflected-light organic petrographic microscopy to investigate the provenance, composition and preservation of organic matter in a marine sediment core retrieved from the NE Greenland shelf. Our study reveals continuous yet variable input of land-derived organic carbon to the marine environment throughout the late Younger Dryas–Holocene, with the highest input of inert carbon in the late Younger Dryas. Although the sediments contain some recent marine palynomorphs, there is no other evidence of fresh marine organic carbon. In contrast, our results indicate that these shelf sediments represent a significant sink of recycled organic carbon. The results of pyrolysis geochemistry revealed that ~90% of the total organic carbon in the sediments is inert. The organic petrography analyses revealed that >70–84% of the organic carbon in the sediment core is terrigenous. Reworked dinoflagellate cysts showed a continuous provenance of Cretaceous land-derived material, most likely from the nearby Clavering Island. Our study points to the importance of constraining the organic matter origin, composition and preservation in marine sediments to achieve more accurate palaeoenvironmental reconstructions based on organic proxies.  相似文献   

13.
14.
Pb–Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb–Zn deposits are located along the intrusive contact between the Paleozoic – Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite–chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ34S) of pyrite are within the range of ?0.59 to +0.17‰V-CDT (n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ34S values around zero“0”. Oxygen isotope values δ18O of quartz vary between +10.5 and +19.9‰(SMOW). However, δ18O and δ13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰(SMOW) and +1.6‰(PDB), respectively. The δ34S, δ13C and δ18O values demonstrate that skarn-type Pb–Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.  相似文献   

15.
In this paper, we present zircon U–Pb age and Hf isotope data to document the significance of magma mixing in the formation of Late Jurassic granitoid intrusions in the eastern Qinling Orogen, China. The Muhuguan granitoid pluton from this orogen consists of monzogranite and lesser biotite granite and granodiorite, all containing abundant hornblende-rich cumulates, dioritic xenoliths, and mafic magmatic enclaves (MMEs). The monzogranite and granodiorite are intruded by a number of lamprophyre dykes. Both a cumulate and a dioritic xenolith samples have concordant zircon U–Pb ages of ca. 161 ± 1 Ma, but possess contrasting Hf isotopic compositions. The cumulate has more radiogenic zircon Hf isotopes with negative ε Hf(t) values (?7.9 to ?2.5) and T DM1 ages of 0.9–1.1 Ga, indicating its derivation likely from basaltic rocks of the Neoproterozoic to early Paleozoic Kuanping Group in the area. The dioritic xenolith has much lower zircon ε Hf(t) values of ?19.5 to ?8.8 and T DM2 ages of 2.4–1.7 Ga, consistent with a juvenile Paleoproterozoic crust source presumably represented by the metabasic rocks of the Qinling Group in the area. Individual samples of the monzogranite, MME, and a lamprophyre dyke have U–Pb ages of 150 ± 1, 152 ± 1, and 152 ± 1 Ma, respectively, demonstrating coeval mafic and felsic magmatism in the Late Jurassic. The lamprophyre dyke has homogeneous, highly negative zircon ε Hf(t) values (?29.8 to ?24.8) and Archean T DM2 ages (3.0–2.7 Ga), and its genesis is interpreted as partial melting of an ancient enriched subcontinental mantle source. Zircons from the fine-grained MME show a large range of ε Hf(t) between ?29.1 and ?9.8, overlapping values of the monzogranite and lamprophyre dyke samples. Zircon U–Pb age and Hf isotopes of the MMEs are consistent with their formation by mixing of crustal- and enriched mantle-derived magmas. The main group of zircons from the monzogranite has ε Hf(t) values (?17.9 to ?9.3) and T DM2 ages (2.3–1.8 Ga) that are compatible with the dioritic xenoliths, indicating that the former was produced by partial melting of Paleoproterozoic crustal source with involvement of mantle-derived magmas. Mafic magmatism revealed from the Muhuguan pluton indicates that the eastern Qinling Orogen was dominated by lithospheric extension during the Late Jurassic. Compilation of existing geological and geochronological data suggests that this extensional event started in Late Jurassic (ca. 160 Ma) and persisted into the Early Cretaceous until ca. 110 Ma. The Jura-Cretaceous extension may have resulted from the late Mesozoic westward subduction of the Pacific plate beneath the East Asian continental margin.  相似文献   

16.
Despite the long history of research, the presence of Precambrian complexes in the West Siberian basement has not been proven. The Tyn'yarskaya 100 and Tyn'yarskaya 101 wells were drilled in the Vakh–Elogui interfluve, in the eastern West Siberian Plate (eastern Khanty-Mansi Autonomous District). At a depth of 1790 m, they stripped a rhyolite extrusion, which graded into A-type alkali granitoids with rare-metal and REE mineralization (thorite, thorogummite, pitchblende, REE-carbonates, chevkinite, and others) downsection. This volcanoplutonic complex is Early Permian (K–Ar age, ~ 270 Ma; Rb–Sr age, 275.7 Ma; Sm–Nd age, 276 Ma; U–Pb age, 277 Ma). Some zircon grains from granites are much older (2049 ± 23 Ma, SHRIMP II), suggesting a relationship between the Early Permian granitic magma and the ancient matter. This might have been a granite-metamorphic basement, the partial melting of which produced the Tyn'yar rhyolite–granite body. The Sm–Nd model ages also suggest the participation of a Precambrian substratum in the formation of the rocks under study. Thus, it is quite possible that the Tyn'yar area is underlain by a Proterozoic (~ 2 Ga) sialic basement, which is an edge of the Siberian Platform thinned by Late Proterozoic–Early Paleozoic rifting and extension.  相似文献   

17.
Uranium-series isotope ratios determined for 35 volcanic rocks and 4 glass separates erupted from ~36 to 4.8 ka at Mt. Mazama, Crater Lake, Oregon, identify both 230Th-excess and 238U-excess components. U–Th isotope compositions cover a wide range, exceeding those previously measured for the Cascade arc. Age-corrected (230Th/232Th) and (238U/232Th) activity ratios range from 1.113 to 1.464 and from 0.878 to 1.572 (44.4 % 230Th-excess to 8.8 % 238U-excess), respectively. The most distinctive aspect of the data set is the contrast in U–Th isotope ratios between low and high Sr (LSr, HSr) components that have been previously identified in products of the 7.7 ka caldera-forming climactic eruption and preclimactic rhyodacite lavas. The LSr component exclusively contains 238U-excess, but the HSr component, as well as more primitive lavas, are marked by 230Th-excess. 230Th-excesses such as those recorded at Mt. Mazama are commonly observed in the Cascades. Melting models suggest that high 230Th-excesses observed in the more primitive lavas evolved through mixing of a mantle melt with a partial melt of a mafic lower crustal composition that contained garnet in the residuum that was produced through dehydration melting of amphibolite that was initially garnet free. Dehydration melting in the lower crust offers a solution to the “hot-slab paradox” of the Cascades, where low volatile contents are predicted due to high slab temperatures, yet higher water contents than expected have been documented in erupted lavas. The 238U-excess observed at Mt. Mazama is rare in Cascade lavas, but occurs in more than half of the samples analyzed in this study. Traditionally, 238U-excess in arc magmas is interpreted to reflect slab fluid fluxing. Indeed, 238U-excess in arcs is common and likely masks 230Th-excess resulting from lower crustal interaction. Isotopic and trace element data, however, suggest a relatively minor role for slab fluid fluxing in the Cascades. We propose that 238U-excess reflects melting and assimilation of young, hydrothermally altered upper crust. The processes related to generating 238U-excess are likely important features at Mt. Mazama that accompanied development of a large-scale silicic magma chamber that led to the caldera-forming eruption.  相似文献   

18.
The first data were obtained on the vertical chlorin flux in the water column and its accumulation in the upper layer of sediments of the Caspian Sea. Seasonal variability of the chlorine concentration in sedimentary matter was evaluated. The tendency of decrease in the phytoplankton-synthesized (allochtonous) organic matter content was revealed over approximately the past 60 years.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号