首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

2.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

3.
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900 cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400 m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100 m and then subside approximately 30 m. At its maximum extent, Lake Oshkosh covered 6600 km2 with a volume of 111 km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9 m/s and peak discharge of 140,000 m3/s are predicted, which could drain 33.5 km3 of lake water in 10 days and transport boulders up to 3 m in diameter.  相似文献   

4.
This paper presents a detailed palaeoglaciological reconstruction of ice sheet dynamics in the Seno Skyring, Seno Otway and Strait of Magellan region of the former Patagonian Ice Sheet, with a particular focus on previously hypothesised zones of rapid ice flow and the evolution of proglacial lakes. Geomorphological mapping from a combination of satellite imagery and oblique and vertical aerial photographs reveals a variety of glacial landforms that are grouped into several discrete flow‐sets and associated ice margin positions. The most distinct features are represented by flow‐sets of highly elongate streamlined glacial lineations on both sides of the Strait of Magellan. Based on the shape and dimensions of the flow‐sets and their abrupt lateral margins, a transverse and longitudinal variation in glacial lineation length and elongation ratio, and the reported presence of a potentially deformable bed and thrust moraines, the flow‐sets are interpreted as zones of rapid ice flow within the Otway and Magellan lobes. We hypothesise that this provides evidence for contemporaneous surge‐like advances within the lobes, which may explain the asymmetry in the lobate margin positions on either side of the strait. The mechanisms that initiated rapid flow are unclear, but are likely to have been influenced by internal factors such as a change in thermal/hydrological conditions at the bed. The topography of the region suggests ice‐dammed lakes would have formed as the ice lobes retreated. The westernmost of the former lakes, Lake Skyring, is delimited by a series of palaeo‐shorelines surrounding the present‐day lake Laguna Blanca and we reconstruct lake evolution based on manipulation of a digital elevation model. The size and orientation of meltwater channels and a large outwash plain indicate that Lake Skyring drained eastwards towards the Strait of Magellan, probably quite rapidly. We conclude that the potential for quasi‐independent surge‐like behaviour within adjacent lobes raises the possibility that, during climate‐driven ice expansion, some advances in this region may have been partly controlled by secondary internal feedback mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
During an early phase of the Last Ice Age (Weichselian, Valdaian), about 90 000 yr ago, an ice sheet formed over the shallow Barents and Kara seas. The ice front advanced on to mainland Russia and blocked the north‐flowing rivers (Yenissei, Ob, Pechora, Dvina and others) that supply most of the freshwater to the Arctic Ocean. The result was that large ice‐dammed lakes were formed between the ice sheet in the north and the continental water divides to the south. Here we present reconstructions and calculations of the areas and volumes of these lakes. The lake on the West Siberian Plain was nearly twice as large as the largest lake on Earth today. The well‐mapped Lake Komi in northeast Europe and a postulated lake in the White Sea Basin would also rank before the present‐day third largest lake. The lakes overflowed towards the south and thus the drainage of much of the Eurasian continent was reversed. The result was a major change in the water balance on the continent, decreased freshwater supply to the Arctic Ocean, and increased freshwater flow to the Aral, Caspian, Black and Baltic seas. A sudden outburst of the lakes' water to the Arctic Ocean when the ice sheet thinned is postulated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
欧亚大陆湖泊记录和两万年来大气环流变化   总被引:16,自引:2,他引:14       下载免费PDF全文
于革  王苏民 《第四纪研究》1998,18(4):360-367
159个湖泊地质记录提供了欧亚大陆两万年来大气环流变化信息。盛冰期北欧低湖面而地中海地区高湖面,反映冰流反气旋控制和西风带南迁。随着晚冰期冰流高压减弱、西风带回迁,南欧为低湖面而北欧低湖面范围减小。全新世早中期北欧阻塞高压发展,干燥炎热;南欧地区性季风环流加强,气旋雨增加。中国青藏高原至东西伯利亚高湖面,反映东亚季风扩张、季风雨以及高原对流雨增加。晚更新世以来湖泊所反映的西风带和季风环流变化,揭示了辐射异常和北半球冰流消长的动力控制。  相似文献   

7.
Lyså, A., Jensen, M. A., Larsen, E., Fredin, O. & Demidov, I. N.* 2010: Ice‐distal landscape and sediment signatures evidencing damming and drainage of large pro‐glacial lakes, northwest Russia. Boreas, Vol. 40, pp. 481–497. 10.1111/j.1502‐3885.2010.00197.x. ISSN 0300‐9483. Sediments from river sections and the morphology of the upper reaches of Severnaya Dvina and Vychegda in northwest Russia show evidence of the existence of large ice‐dammed lakes in the area twice during the Weichselian. During the Late Weichselian, three separate ice‐dammed lakes (LGM lake(s)) existed, the largest one at about 135 m a.s.l. having a volume of about 1510 km3. Stepwise and rapid lake drainage is suggested to have taken place within less than 1000 years. The locations of various passpoints controlled the drainage, and when the lake was at its maximum level water spilled southeastwards into the Volga basin. Later, but before the lake water finally drained into the White Sea, water was routed northeastwards into the southeastern part of the Barents Sea. The oldest lake, the White Sea lake, existed around 67–57 ka ago, slightly in conflict with earlier palaeogeographic reconstructions regarding the chronology. The extent of the lake was constrained by, in addition to the Barents Sea ice‐sheet margin in the north, thresholds in the drainage basin. Later, one threshold was eroded and lowered during the LGM lake drainage. Given a lake level of about 115 m a.s.l., a lake area of about 2.5 × 104 km3 and a water volume of about 4800 km3, the lake drainage northwards and into the ocean probably impacted the ocean circulation.  相似文献   

8.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
王琼  王欣  雷东钰  殷永胜  魏俊锋  张勇 《冰川冻土》2022,44(3):1041-1052
冰川-冰湖耦合过程是冰冻圈物质与能量循环的重要组成部分,系统刻画冰川演化与冰湖发育过程的相互作用机制,对于完善冰冻圈科学理论体系和认知冰川作用区变化规律、水循环模式和灾害效应具有重要意义。本文立足山地冰川演化和冰湖发育过程,系统归纳了冰川-冰湖相互作用研究进展,剖析了冰川作用与冰湖发育耦合机制及相关模型的应用,并对现有冰川演化与冰湖发育过程耦合机制研究存在的不足与挑战进行解析和总结。冰川-冰湖耦合过程的深入研究有助于提高数值模拟的可信度与精度,为评估冰川-冰湖耦合过程影响、建立灾害监测预警体系和采取适应性措施提供数据与理论基础。  相似文献   

10.
This study precisely constrains the timing of the Younger Dryas (YD) glacial maximum in south‐western Norway by utilizing sediment records from lake basins. Two of the basins, located on the distal side of the mapped Herdla–Halsnøy Moraine, received meltwater directly from the ice sheet only when the ice margin reached its maximum extent during the YD. In the cores, the ice maximum is represented by well‐defined units with meltwater deposits, dominantly laminated silt. Plant macrofossils in the sediment sequences are common and we obtained 18 radiocarbon ages from one of the cores. By applying Bayesian age–depth modelling we obtained a precise date for this meltwater event and thereby also for the timing of the YD glacial maximum. We conclude that the ice‐sheet advance culminated at the Halsnøy Moraine at 11 760 ± 120 cal a BP, and that the ice margin stayed in this position for 170 ± 120 years. The subsequent retreat started at 11 590 ± 100 cal a BP, i.e. close to the YD/Holocene boundary. Withdrawal was probably triggered by abrupt climatic warming at this time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We have jointly analysed space gravimetry data from the GRACE space mission, satellite altimetry data and precipitation over the East African Great Lakes region, in order to study the spatiotemporal variability of hydrological parameters (total water storage, lake water volume and rainfall). We find that terrestrial water storage (TWS) from GRACE and precipitation display a common mode of variability at interannual time scale, with a minimum in late 2005, followed by a rise in 2006–2007. We argue that this event is due to forcing by the strong 2006 Indian Ocean Dipole (IOD) on East African rainfall. We also show that GRACE TWS is linked to the El Niño-Southern Oscillation cycle. Combination of the altimetry-based lake water volume with TWS from GRACE over the lakes drainage basins allows estimating soil moisture and groundwater volume variations. Comparison with the WGHM hydrological model outputs is performed and discussed.  相似文献   

12.
This article reports on an Early Saalian proglacial lake formed between the Scandinavian Ice Sheet and the front of the Sudeten Mountains, Poland. Sediments investigated at Mys?ów point to a transition from glacifluvial to glaciolacustrine environments. The bulk of the sediments was deposited in deep‐water Gilbert‐type deltas (A–E complexes). A delta plain (topset) gradually passes into a subaerial plateau and then a clastic shoreline and the subaquatic slope of a prograding delta (foreset). The glaciolacustrine lithofacies represent a number of lake‐basin environments, from marginal subaqueous slopes to distal parts of a subaqueous fan. Glaciolacustrine and glaciodeltaic deposits locally reach ?50–70 m in thickness. Analyses of A–E complexes indicate that the lake existed for more than 130 years and that its origin and evolution were closely connected with the ice front. This case study records lake sedimentation at an ice‐sheet margin with cohesionless gravity flows, turbidity currents, debris‐avalanching and, to a much lesser degree, parapelagic suspension fall‐out and ice‐raft dumping. In the initial stage, the lake extended more than 10 km to the south, and the deposition was relatively slow. In the second stage, recession of the ice sheet caused rapid growth of a delta. The third and ultimate stage coincided with the final glacial recession, with rapid deposition occurring only on the lake bottom. The model of the glaciolacustrine environment presented here may also be applicable to many other proglacial lakes in mountain areas.  相似文献   

13.
I. Rod Smith 《Sedimentology》2000,47(6):1157-1179
Sediment cores from six small lake basins in the Canadian high Arctic reveal a gravel‐rich (≤30% by weight) to gravel‐poor (≥2%) diamict facies underlying massive, post‐glacial, clayey silt. Ten other lakes contain a second diamict facies within what are interpreted to be glaciolacustrine sedimentary assemblages. The sedimentology, clast fabrics and fossil remains (diatoms, ostracodes and chironomid head capsules) within both diamict facies suggest that these deposits are not tills. Clast fabrics yielded low S1 (0·41–0·57) and high S3 (0·09–0·22) eigenvalues, placing them within the range of ice‐rafted diamictons and glacigenic sediment flows. The high percentage of clast dip angles >45° (15–61%), random clast azimuth and lower diamict contacts conformable to underlying current‐bedded sediment favours an origin as a rain‐out or settling deposit. Samples of the matrix and scrapings of clasts from the diamicts revealed a diatom assemblage dominated by littoral and planktonic forms, such as are found in the littoral regions of the lakes today. This contrasts sharply with the assemblages within the overlying clayey silt, in which benthic forms predominate. Clasts are thus interpreted to have been rafted from the littoral areas of the lake. The process proposed to explain this is rafting by the lake ice cover in a glacial‐marginal environment. Early season meltwater, impounded along the lateral margin of retreating cold‐based glaciers, would buoyantly lift the lake ice cover and any adfrozen lake sediment. Higher lake levels and increased areal extent of seasonal freeze‐on between the lake ice cover and the lake bed would allow the redeposition of littoral sediments to the benthic regions through greater lateral shifting of the ice cover as it broke up. Incision by meltwater streams into the lateral glacial margins would later isolate the lake, allowing seasonal warming of lake water, enough to support the growth and maturation of the ostracode and chironomid species found as fossils within the diamicts.  相似文献   

14.
15.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   

16.
Reconstructing ice‐lake histories is of considerable importance for understanding deglacial meltwater budgets and the role of meltwater reservoirs for sea‐level rise in response to climate warming. We used the latest data on chronology and ice‐sheet extents combined with an isostatically adjusted digital elevation model to reconstruct the development of proglacial lakes in the area of the Karelian ice stream complex of the Late Weichselian Scandinavian Ice Sheet on the East European Plain. We derived the deglacial ice lake development in seven time‐slices from 19 to 13.8 ka, assuming the individual ice‐marginal positions to be isochronous throughout the studied domain. Modelling is based on mapping of critical drainage thresholds and filling the depressions that are potentially able to hold meltwater. Such an approach underestimates the real dimensions of the ice lakes, because the role of erosion at the thresholds is not considered. Our modelling approach is sensitive to the (local) ice‐margin location. Our results prove the southward drainage of meltwater during the glacier extent maxima and at the beginning of deglaciation whereas rerouting to the west had taken place already around 17.5 ka, which is some 1.5 ka earlier than hitherto supposed. The total ice‐lake volume in the study area was lowest (~300 km3) during the maximum glacier extent and highest (~2000 km3) during the highstand of the Privalday Lake at c. 14.6 ka. At 14.6–14.4 ka, the Privalday Lake drained to the early Baltic Ice Lake. The released ~1500 km3 of water approximately corresponds to 20% of the early Baltic Ice Lake water volume and therefore it is unlikely that it was accommodated there. Thus, we argue that the additional meltwater drained through the Öresund threshold area between the early Baltic Ice Lake and the sea, becoming a part of the Scandinavian Ice Sheet's contribution to the Meltwater Pulse 1A event.  相似文献   

17.
The glacial hydrology of the meltwaters of the ice sheet during deglaciation in a large river basin has been reconstructed on the basis of heights of thresholds and saddles of bedrock topography, glaciofluvial accumulation forms (eskers, deltas and plains of sorted material) and erosional landforms (drainage channels and shorelines) as well as a few terminal moraines. The water level of glacial lake dropped in several stages. The lake existed and deglaciation took place before 9740±280 years B.P. The deglaciation took place at a much faster rate in the studied region than later in western Lapland.  相似文献   

18.
The Late Quaternary sediment sequence of the continental margin in the eastern Weddell Sea is well suited for palaeoenvironmental reconstructions. Two cores from the upper slope, which contain the sedimentary record of the last 300 ky, have been sedimentologically investigated. Age models are based on lithostratigraphy and are correlated with the stable isotope record. As a result of a detailed analysis of the clay mineral composition, grain size distributions and structures, this sedimentary record provides the first marine evidence that the Antarctic ice sheet extended to the shelf edge during the last glacial.The variations in volume and size of the ice sheet were also simulated in numerical models. Changes in accumulation rate and ice temperature are of some importance, but the model revealed that fluctuations are primarily driven by changes in eustatic sea-level and that the ice edge extended to the shelf edge during the last glacial maximum. This causal relationship implies that the maximum ice extension strongly depends on the magnitude and duration of the sea-level depression during a glacial period. The results of the sedimentological investigations and of the numerical models show that the Antarctic ice sheet follows glacial events in the northern hemisphere by teleconnections of sea level. Correspondence to: H. Grobe  相似文献   

19.
张信宝 《冰川冻土》2005,27(3):438-443
20世纪50-70年代核试验产生的137Cs尘埃,在现代冰川和非冰川湖泊沉积剖面中的深度分布存在明显差异.同理,大气宇宙射线成因的长半衰期10Be尘埃,在第四纪冰川和非冰川湖泊沉积剖面中的深度分布也应存在差异.第四纪冰川湖泊,冰期时流域内冰雪和10Be的累积量大于消融量,间冰期时冰雪和10Be的消融量大于累积量.因此,冰川湖泊冰期的10Be入湖通量小于间冰期.湖泊沉积剖面10Be浓度的波动,很可能表征流域内冰雪消融与累积的变化.非冰川湖泊,不存在冰川的累积与消融对10Be入湖通量的影响.开展第四纪冰川与非冰川湖泊沉积10Be含量变化的对比研究,有可能为破译中国东部中低山区古冰川和青藏高原大冰盖的世纪之争提供新的证据.  相似文献   

20.
The Charlevoix region, in southeastern Québec, is characterized by a dramatic landscape formed by the junction of the Laurentian Highlands, the Charlevoix Astrobleme and the St Lawrence Estuary. At the Last Glacial Maximum (LGM), the region was completely covered by the Laurentide Ice Sheet (LIS). The complex topography of the region was the stage of many of the major deglacial events of southern Quebec (e.g. Goldthwait Sea Invasion, St Lawrence Ice‐Stream, Saint‐Narcisse Episode). We present a detailed reconstruction of the pattern of retreat of the LIS in the Charlevoix region based on the interpretation of ice‐marginal features (e.g. moraines, fans) and glaciolacustrine landforms and deposits, two extensive field campaigns, and the interpretation of high‐resolution 3D digital aerial photographs and LiDAR data. Our results indicate five moraine complexes in the region: the Rochette, the Brûlée, the Sainte‐Anne, the Saint‐Narcisse and the Mars‐Batiscan complexes. Deltas, fans, fine‐grained sediments, littoral deposits, drainage breaches and deposits were used to identify 91 palaeo‐proglacial lakes. The identification of these lakes and their relation to moraine complexes enabled the reconstruction of six stages of lake development during the Charlevoix deglaciation. The development of proglacial lakes occurred in all types of terrain (highlands, lowlands, transitory levels above marine limit). We conclude that local topography had a decisive effect on promoting both moraine deposition and lake development. We suggest that similar topographical regions (hilly‐mountainous) that were affected by major ice‐margin stabilizations during glacial retreat should have experience small lakes dominating valleys and topographical lows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号