首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A theoretical study of reactive infiltration instability is conducted on the dissolution timescale. In the present theoretical study, the transient behavior of a dissolution-timescale reactive infiltration system needs to be considered, so that the upstream region of the chemical dissolution front should be finite. In addition, the chemical dissolution front of finite thickness should be considered on the dissolution timescale. Owing to these different considerations, it is very difficult, even in some special cases, to derive the first-order perturbation solutions of the reactive infiltration system on the dissolution timescale. To overcome this difficulty, an interface-condition substitution strategy is proposed in this paper. The basic idea behind the proposed strategy is that although the first-order perturbation equations in the downstream region cannot be directly solved in a purely mathematical manner, they should hold at the planar reference front, which is the interface between the upstream region and the downstream region. This can lead to two new equations at the interface. The main advantage of using the proposed interface-condition substitution strategy is that through using the original interface conditions as a bridge, the perturbation solutions for the dimensionless acid concentration, dimensionless Darcy velocity, and their derivatives involved in the two new equations at the interface can be evaluated just by using the obtained analytical solutions in the upstream region. The proposed strategy has been successfully used to derive the dimensionless growth rate, which is the key issue associated with the theoretical study of dissolution-timescale reactive infiltration instability in fluid-saturated porous rocks.  相似文献   

2.
The chemical‐dissolution front propagation problem exists ubiquitously in many scientific and engineering fields. To solve this problem, it is necessary to deal with a coupled system between porosity, pore‐fluid pressure and reactive chemical‐species transport in fluid‐saturated porous media. Because there was confusion between the average linear velocity and the Darcy velocity in the previous study, the governing equations and related solutions of the problem are re‐derived to correct this confusion in this paper. Owing to the morphological instability of a chemical‐dissolution front, a numerical procedure, which is a combination of the finite element and finite difference methods, is also proposed to solve this problem. In order to verify the proposed numerical procedure, a set of analytical solutions has been derived for a benchmark problem under a special condition where the ratio of the equilibrium concentration to the solid molar density of the concerned chemical species is very small. Not only can the derived analytical solutions be used to verify any numerical method before it is used to solve this kind of chemical‐dissolution front propagation problem but they can also be used to understand the fundamental mechanisms behind the morphological instability of a chemical‐dissolution front during its propagation within fluid‐saturated porous media. The related numerical examples have demonstrated the usefulness and applicability of the proposed numerical procedure for dealing with the chemical‐dissolution front instability problem within a fluid‐saturated porous medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号