首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical solution, using the finite difference method, and based on a porothermo-elasto-plastic formulation for dual-porosity one-dimensional consolidation has been presented. The model is fully coupled to ensure the interactive behavior of fluid flow, heat flow and solid deformations in the conservation of momentum, mass and energy equations. A bi-linear stress-strain relationship is used to accommodate elastoplastic deformation behavior. A double effective stress law, proposed by Elsworth and Bai (1992), is applied to describe constitutive relationships among the stresses, pressures and temperatures. In order to examine the dual-porosity and thermal effects on the soil consolidation individually, isothermal and non-isothermal consolidations for a dual-porosity column are analyzed. In comparison to the single porosity approach, the present study shows that the pore pressure dissipation is faster and Mandel's effect (Mandel, 1953) is more pronounced at early times of the source disturbance for dual-porosity consolidation. One of the significant parameters affecting the dual-porosity consolidation is the fracture spacing (fracture density); the smaller the fracture spacing, the faster the column drainage.  相似文献   

2.
It is well accepted that severe numerical difficulties arise when using the conventional finite element displacement method to analyse incompressible, or nearly incompressible, solids. These effects are caused by the kinematic constraints imposed on the nodal velocities by the constant volume condition. In elastic-plastic analysis, these effects are due to a conflict between the plastic flow rule and the finite element discretization. Although several methods have been proposed to cope with this problem, none has been based on the appropriate choice of displacement interpolation to minimise the constraints. In this paper, a new displacement interpolation, which is able to reduce the imposed constraints, is adopted. Comparisons of the results with those from a conventional linear displacement interpolation are made for predictions of cylindrical and spherical cavity expansion limit pressures in elastic-plastic solids. This study suggests that the proposed displacement interpolation is preferable to the conventional one in the elastic-plastic finite element analysis of one dimensional-axisymmetric problems which involve nearly incompressible material behaviour.  相似文献   

3.
双重介质模型能较好地刻画天然裂隙含水层的非均质性及液体流动和溶质迁移特征。在石油开采、核废物处置安全评价和环境水文地质等方面受到广泛重视。但是,双重介质模型的实际应用远远落后于其理论发展。其原因除了双重介质模型复杂、计算工作量大以外,模型参数确定的理论和测试方法很不完善,难以取得两套较客观的模型参数是另一重要原因。本文就双重介质含水层参数的确定问题,从其介质特征和水流运动特征入手,探讨了双重介质含水层中抽水和注水条件下的井流动力学方程及其求解方法,并讨论了其适用条件及存在的问题,最后,用实际资料说明了求参过程,检验了公式。  相似文献   

4.
The state of the art of modeling fluid flow in shale reservoirs is dominated by dual-porosity models which divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano-pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual-porosity models and Darcy’s law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of the complex flow mechanisms occurring in these reservoirs. This paper presents a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three porosity systems: inorganic matter, organic matter (mainly kerogen), and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of nano-pores and micro-pores in kerogen are incorporated into the simulator. The multiple-porosity model is built upon a unique tool for simulating general multiple-porosity systems in which several porosity systems may be tied to each other through arbitrary connectivities. This new model allows us to better understand complex flow mechanisms and eventually is extended into the reservoir scale through upscaling techniques. Sensitivity studies on the contributions of the different flow mechanisms and kerogen properties give some insight as to their importance. Results also include a comparison of the conventional dual-porosity treatment and show that significant differences in fluid distributions and dynamics are obtained with the improved multiple-porosity simulation.  相似文献   

5.
Unlike micropores where water moves upward or downward based on hydraulic gradient, in macropores, water flows predominantly downward due to the gravity. Therefore, models based on capillary flow are not capable of simulating macropore flow. There are attempts to model the macropore flow using two domains, one for capillary flow and another one for macropores. These models use Richard’s equation for capillary flow and Poiseuille’s law for macropores in which the macropore is approximated to be cylindrical or planar. This study quantifies the magnitudes of the errors induced by this assumption. Influence of macropore shapes and tortuosity was quantified by using a 3D Lattice Boltzmann model, which is capable of simulating fluid flow in micropores as well as macropores of cracked clays. Artificial macropores of constant sectional area and volume, but different shapes were generated in 3D and the influence of macropore shapes, shape related parameters, and tortuosity were systematically investigated. Macropore flow rate decreases with different shapes compared to cylindrical macropores and increase in aspect ratio of sectional shape leads to decrease in macropore flow rate. The maximum effect of bends/turnings along the tortuous macropore was about 25% on overall decrease of flow rate due to tortuosity. However, more detailed study is required on the influence of bends on macropore flow rate. The macropore flow rate reduces by about 70% for tortuosity of 1.41. A prediction equation is verified to predict the flow rate of different shapes and tortuous macropores based on straight cylindrical macropore using aspect ratio and tortuosity factor.  相似文献   

6.
泥石流的二维数学模型   总被引:5,自引:2,他引:3  
泥石流是在重力作用下,由砂粒石块和水等组成的固液混合物,是一种发生于山区的复杂的地质灾害现象。泥石流主要是由暴雨诱发引起的,它沿着复杂的三维地形高速流动,具有流体流动的特性。为了模拟泥石流的运动规律,预测降雨诱发的泥石流的到达距离和泛滥范围,减少和避免泥石流引起的灾害,把泥石和雨水组成的固液混合物假定为遵循均匀、连续、不可压缩的、非定常的牛顿流体运动规律。基于质量守恒方程和Naiver-stokes方程,采用深度积分方法,推导出了一个模拟泥石流运动的二维数学模型。所有方程式可用有限差分法来求解。结合GIS,该模型可用于预测泥石流的流动距离和泛滥范围,以及泛滥范围内的危险房屋和路段,也可以用于泥石流灾害的风险性分析。  相似文献   

7.
山地冰川流动模型探讨   总被引:2,自引:2,他引:0  
近30 a来冰川动力学模型有了快速发展, 在南极、 格林兰冰盖预测中取得一系列重要成果, 对山地冰川的研究也初见端倪. 从冰川流动的力学过程出发, 利用本构方程、 理想冰川假设、 浅冰层近似(Shallow ice approximation)假设完整地推导了理想冰川流动的物理过程, 揭示了冰川流动的机理, 建立了气候变化和冰川自身重力引起的理想冰川物质和能量再分配的温度耦合三维流动模型. 结合山地冰川的冰床形态, 将理想冰川与实际冰川相结合, 使理想冰川流动模型更好地近似山地冰川的流动.  相似文献   

8.
考虑气相影响的降雨入渗过程分析研究   总被引:4,自引:1,他引:3  
降雨入渗过程是水在下渗的过程中驱替空气的水-气二相流过程,对这一过程的精确模拟一直是渗流计算的难点,目前的处理方法通常是忽略孔隙气压力变化的影响。根据多相流理论,结合质量守恒定律和达西定律,建立了水-气二相流模型,模型的求解采用积分有限差分法和Newton-Raphson迭代方法,通过变换主要变量来表达相态的变化,实现了水相、气相边界条件及降雨入渗边界的精确模拟。利用上述模型对一土柱试验进行模拟,从而验证了模型的正确性,研究了一均质土层的降雨入渗过程,得到了孔隙水压力、孔隙气压力和毛细压力及含水率的变化过程。根据入渗率与地表孔隙气压力的变化关系,验证了孔隙气压力的增大对入渗水流产生阻滞作用。在求解非稳定渗流问题中,考虑空气压力变化的影响是值得研究的。  相似文献   

9.
A microstructure model of dual-porosity type is proposed to describe contaminant transport in fully-saturated swelling clays. The swelling medium is characterized by three separate-length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the nanoscale, the medium is composed of charged clay particles saturated by a binary monovalent aqueous electrolyte solution. At the intermediate (micro) scale, the two-phase homogenized system is represented by swollen clay clusters (or aggregates) with the nanoscale electrohydrodynamics, local charge distribution, and disjoining pressure effects incorporated in the averaged constitutive laws of the electro-chemo-mechanical coefficients and the swelling pressure, which appear in Onsager’s reciprocity relations and in a modified form of Terzaghi’s effective principle, respectively. The microscopic coupling between aggregates and a bulk solution lying in the micropores is ruled by a slip boundary condition on the tangential velocity of the fluid, which captures the effects of the thin electrical double layers surrounding each clay cluster. At the macroscale, the system of clay clusters is homogenized with the bulk fluid. The resultant macroscopic picture is governed by a dual-porosity model wherein macroscopic flow and ion transport take place in the bulk solution and the clay clusters act as sources/sinks of mass of water and solutes to the bulk fluid. The homogenization procedure yields a three-scale model of the swelling medium by providing new nano and micro closure problems, which are solved numerically to construct constitutive laws for the effective electro-chemo-hydro-mechanical coefficients. Considering local instantaneous equilibrium between the clay aggregates and micropores, a quasisteady version of the dual-porosity model is proposed. When combined with the three-scale portrait of the swelling medium, the quasisteady model allows us to build-up numerically the constitutive law of the equilibrium adsorption isotherm, which governs the instantaneous immobilization of the solutes in the clay clusters. Moreover, the constitutive behavior of the retardation coefficient is also constructed by exploring its representation in terms of the local profile of the electrical double layer potential of the electrolyte solution, which satisfies the Poisson–Boltzmann problem at the nanoscale.  相似文献   

10.
We present a fracture-only reservoir simulator for multiphase flow: the fracture geometry is modeled explicitly, while fluid movement between fracture and matrix is accommodated using empirical transfer functions. This is a hybrid between discrete fracture discrete matrix modeling where both the fracture and matrix are gridded and dual-porosity or dual-permeability simulation where both fracture and matrix continua are upscaled. The advantage of this approach is that the complex fracture geometry that controls the main flow paths is retained. The use of transfer functions, however, simplifies meshing and makes the simulation method considerably more efficient than discrete fracture discrete matrix models. The transfer functions accommodate capillary- and gravity-mediated flow between fracture and matrix and have been shown to be accurate for simple fracture geometries, capturing both the early- and late-time average behavior. We verify our simulator by comparing its predictions with simulation results where the fracture and matrix are explicitly modeled. We then show the utility of the approach by simulating multiphase flow in a geologically realistic fracture network. Waterflooding runs reveal the fraction of the fracture–matrix interface area that is infiltrated by water so that matrix imbibition can occur. The evolving fraction of the fracture–matrix interface area turns out to be an important characteristic of any particular fracture system to be used as a scaling parameter for capillary driven fracture–matrix transfer.  相似文献   

11.
针对表面活性剂强化的重非水相流体(DNAPLs)污染的含水层修复问题,在建立多相流数值模拟模型的基础上,应用拉丁超立方采样(LHS)方法,在多相流模拟模型可控输入变量的可行域内采样,有效提高了采样效率和覆盖程度。根据采集的样品数据集,运用多元回归分析方法建立多相流模拟模型的替代模型--双响应面模型,为DNAPLs污染含水层修复过程的优化设计的耦合技术探索新的理论和方法。经检验,替代模型计算结果的相对误差均小于10%,精度较高,说明其在功能上充分逼近模拟模型。运用替代模型实现模拟模型与优化模型的连接,可以大幅度减少优化模型计算过程中直接多次反复调用模拟模型所引起的庞大计算负荷。  相似文献   

12.
This paper presents a numerical model for simulating free surface flow in porous media with spatially varying porosity. The governing equations are based on the mixture theory. The resistance forces between solid and fluid is assumed to be nonlinear. A multiphase SPH approach is presented to solve the governing equations. In the multiphase SPH, water is modeled as a weakly compressible fluid, and solid phase is discretized by fixed solid particles carrying information of porosity. The model is validated by several numerical examples including seepage through specimen, fast flow through rockfill dam and wave interaction with porous structure. Good agreements between numerical results and experimental data are obtained in terms of flow rate and evolution of free surface. Parameter study shows that (1) the nonlinear resistance law provides more accurate results; (2) particle size and porosity have significant influence on the porous flow.  相似文献   

13.
粗糙裂隙水、气两相流相对渗透系数是岩体工程多相渗流以及水力耦合分析的重要参数。从粗糙裂隙的细观结构出发,基于毛细吸持理论和立方定理,提出了粗糙裂隙水、气两相流相对渗透系数模型。通过与具有不同空间分布的粗糙裂隙水、气两相流试验数据对比分析,验证了模型的准确性。为进一步验证理论模型对不同粗糙程度裂隙的适用性,基于SRAM与Invasion Percolation模型,提出了粗糙裂隙的开度分布生成以及水、气两相流数值分析方法,计算结果表明理论模型与数值数据基本吻合一致,且优于X模型、V-C模型以及Corey模型。  相似文献   

14.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

15.
应用双重介质气水二维二相模型,借助排水采气的单井处理技术,针对中坝须二气藏目,前排水采气中存在的问题,成功地对该气藏排水规模进行了论证,推荐了科学合理的排水规模(方案),对该气藏的排水采气具有指导意义,可为气藏排水采气的方案论证借鉴。  相似文献   

16.
带横隔板圆柱绕流特性数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示尾迹区添加横隔板对圆柱绕流流场特性影响,把多步格式引入到特征线算子分裂有限元法中,建立了基于多步格式的特征线算子分裂有限元法:在每个时间步内将Navier-Stokes方程分裂成对流项和扩散项,对流项时间离散采用多步格式,在每一子时间步内沿特征线展开并显式求解。方腔流数值模拟结果表明该算法既可降低对整体时间步长的要求又可提高计算精度。对比有无横隔板圆柱绕流流场和圆柱表面压力变化表明,横隔板可以有效地抑制绕流尾迹区涡旋脱落,提高圆柱背流面压力,减少圆柱上下表面的压力差。  相似文献   

17.
In structural geology, viscous creep is generally recognized as the major deformation mechanism in the folding of rock layers through geological time scales of hundreds of thousands of years. Moreover, since deformation of rock salt by creep takes already place on relatively small time scales—weeks to months, say—creep is a relevant phenomenon when studying salt mining, notably the convergence of mine cavities and the land subsidence caused by it. While creep is the dominant process on relatively long time scales, elasticity plays a dominant role in processes that take place on relatively short time scales. The elastic response to a stress is a displacement; the shape of the rock is deformed instantaneously with respect to its initial shape. However, the viscous response of a rock to a stress is a relatively low velocity in the order of millimeters per months or years, say. In this paper we consider the two deformation phenomena creep and elasticity. In general, elasticity is a compressible phenomenon, while creep is incompressible. Here we approximate creep by the introduction of a negligibly small amount of compressibility, which makes creep velocity calculations similar to conventional elastic displacement calculations. Using this procedure, a standard finite element package for elasticity can be applied to viscous problems, also in combination with elasticity. The method has been demonstrated to upscaling of creep viscosities.  相似文献   

18.
水流在非饱和土体中的入渗过程实质上是水在下渗的过程中驱替空气的两相流问题。为揭示非饱和花岗岩残积土水-气两相驱替动态渗流机理,选取福州某地原状花岗岩残积土作为研究对象,基于工业CT扫描图像与Level Set方法,研究了原状土样两相驱替的动态特征。结果表明:对于细观尺度水-气两相驱替模拟,Level Set法能很好地捕捉两种不混溶流体间的界面位置;水-气两相驱替过程存在大孔隙优先流特征,且“绕流”现象一般易于出现在孔隙成圆度较高处;两相渗流速度主要受孔道迂回度控制,笔直、较宽孔道,渗流速度相对较高,同时存在明显的“优势通道”,且随渗流时间增大以先急后缓的特征呈正相关变化,最大增速率为 10.77%,最小仅 1.90%;孔道横截面速度大小分布与孔隙结构有关,“回流”和“绕流”现象会使驱替速度骤降,降低幅度可达21.62%;驱替阻力最大出现在孔壁处,孔道越窄,阻力越大;驱替效率与驱替压差成正比关系,且初期加压增速效果显著,可达25.49%,后期仅为1.47%。该研究成果可丰富降雨型滑坡理论基础并预防灾害产生,具有重要的理论价值及工程意义。  相似文献   

19.
Most multiple-fractured horizontal wells experience long-term linear flow due to the ultralow permeability of shale gas reservoirs. Considering the existence of natural fractures caused by compression and shear stresses during the process of tectonic movement or the expansion of high-pressure gas, a shale gas reservoir can be more appropriately described by dual-porosity medium. Based on the assumption of slab dual-porosity, this paper uses the trilinear flow model to simulate the transient production behavior of multiple-fractured horizontal wells in shale gas reservoirs, which takes the desorption of adsorbed gas, Knudsen diffusion and gas slippage flow in the shale matrix into consideration. Production decline curves are plotted with the Stehfest numerical inversion algorithm, and sensitivity analysis is done to identify the most influential reservoir and hydraulic fracture parameters. It was found that the density and permeability of the natural fracture network are the most important parameters affecting the production dynamics of multiple-fractured horizontal wells in shale gas reservoirs. The higher the density and permeability of the natural fractures are, the shorter the time is required to exploit the same amount of reserve, which means a faster investment payoff period. The analytical model presented in this paper can provide some insight into the reserve evaluation and production prediction for shale gas reservoirs.  相似文献   

20.
The equations governing the undrained linear elastic behaviour of a saturated soil are formally similar to the equations governing slow of an incompressible Newtonian viscous fluid. This principle of equivalence can then be effectively employed to obtain the load-deflection reiationship for a deep rigid anchor with the shape of a solid of revolution which is embedded in bonded contact with an unbounded incompressible elastic medium. It is found that the load-deflection relationship for the deep rigid anchor can be directly recovered from the expression for the drag induced on an impermeable object with the same size and shape as the anchor, which is appropriately placed in a slow viscous flow region of uniform velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号