首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman-Oppenheimer-Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide range of behaviour in the surface tension than is the case with isotropic pressures. In particular, it is possible that anisotropy drastically decreases the value of the surface tension.  相似文献   

2.
The surface fine structure of bare strange stars is determined. The distribution of electrons and quarks in the surface layer is determined using a phenomenological Thomas-Fermi model. For the MIT bag model, the quark density at the free surface is found to fall off continuously to zero in a layer of finite thickness. Unlike the results of other authors, here the electric field in the transition layer changes direction. The coefficient of surface tension of the quark matter is determined in terms of this model. Depending on the model parameters, it is 60–150 MeV/Fm2.Translated from Astrofizika, Vol. 48, No. 1, pp. 139–150 (February 2005).  相似文献   

3.
In this paper we present a comprehensive study of the heavy quark production in ultra high energy cosmic ray interactions in the atmosphere considering that the primary cosmic ray can be either a photon, neutrino or a proton. The analysis is performed using a unified framework – the dipole formalism – and the saturation effects, associated to the physical process of parton recombination, are taken into account. We demonstrate that the contribution of heavy quarks for cosmic ray interactions is in general non-negligible and can be dominant depending of the process considered. Moreover, our results indicate that new dynamical mechanisms should be included in order to obtain reliable predictions for the heavy quark production in pp collisions at ultra high cosmic ray energies.  相似文献   

4.
The Nambu–Jona-Lasinio model is known for its simplicity and capacity to reproduce some of the basic characteristics of the quantum chromodynamics phase diagram. However, since it is a nonrenormalizable model, there are regularization issues that should be treated conveniently. This is the case when considering the quark anomalous magnetic moment (AMM) when external constant magnetic fields are present. Regularization procedures based on entangled functions between the magnetic field and the cutoff of the model can predict first-order phase transitions for chiral symmetry restoration at finite values of magnetic fields and inverse magnetic catalysis. The strengths of magnetic fields explored in NJL model and lattice QCD do not show first-order phase transition. In the present work, we show that some of the previous results are regularization-dependent effects and how to handle the divergences using the vacuum magnetic regularization scheme.  相似文献   

5.
As neutron stars spin-down and contract, the deconfinement phase transition can continue to occur, resulting in energy release (so-called deconfinement heating) in case of the first-order phase transition. The thermal evolution of neutron stars is investigated to combine phase transition and the related energy release self-consistently. We find that the appearance of deconfinement heating during spin-down result in not only the cooling delay but also the increase of surface temperature of stars. For stars characterized by intermediate and weak magnetic field strength, a period of increasing surface temperature could exist. Especially, a sharp jump in surface temperature can be produced as soon as quark matter appears in the core of stars with a weak magnetic field. We think that this may serve as evidence for the existence of deconfinement quark matter. The results show that deconfinement heating facilitates the emergence of such characteristic signature during the thermal evolution process of neutron stars.  相似文献   

6.
In the present work, we employ a nonlocal Nambu–Jona–Lasinio (NJL) model with a Gaussian form factor that is dependent on the spatial components of the momentum (3D-FF). Focusing on the temperature-baryon chemical potential plane, we investigate some aspects of the phase diagram. Initially, we propose an assumption that the range of interactions in momentum space may be modified by temperature, allowing us to obtain the critical temperature values based on lattice QCD (LQCD) predictions. Subsequently, we consider this model within a hybrid framework to examine the effects of temperature, together with neutrino trapping, in compact object configurations.  相似文献   

7.
为适应FAST项目索网结构索单元应力测量的需求,设计并制作了一种以频率法测索力理论为基础的无线式索力传感器节点。首先阐明了FAST工程中使用无线式索力传感器的必要性和优势;其次给出了频率法测索力的理论依据;重点介绍了基于MMA7260加速度计芯片的无线式索力传感器节点的硬件及软件设计;最后对传感器进行了对照实验。实验结果表明:该无线式传感器能准确拾取钢索振动信号,索内应力与一阶振动频率的一致性较好,为FAST日后施工过程的索力测量积累了经验。  相似文献   

8.
We study quarkand strangequarkmatter in the contextof generalrelativity.For this purpose,we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times,thus we are able to obtain the space-time geometries of quark and strange quark matter. Also,we discuss the features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory,i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).  相似文献   

9.
This paper presents a family of two-parametric interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with particular form of charge distribution. This class of solutions gives us wide range of parameters, n and K, for which the solutions are well behaved hence, suitable for modeling of compact star (e. g. bare strange quark star). The mass of star is maximized with all degree of suitability by assuming the stellar “surface” density equal to strange (quark) matter density at zero pressure. It is hoped that our investigation may be of some help in connection of some study of stellar structure.  相似文献   

10.
We have considered a hot neutron star with a quark core,a mixed phase of quark-hadron matter,and a hadronic matter crust and have determined the equation of state of the hadronic phase and the quark phase.We have then found the equation of state of the mixed phase under the Gibbs conditions.Finally,we have computed the structure of a hot neutron star with a quark core and compared our results with those of the neutron star without a quark core.For the quark matter calculations,we have used the MIT bag model...  相似文献   

11.
We investigate the “antiglitch” AXP 1E 2259+586 experienced between MJD=56031 and 56045 in the context of the Quark-Nova model in which an AXP is a quark star surrounded by a degenerate Keplerian disk. In a companion paper we assumed the “anti-glitch” to be instantaneous, whereas in this paper we consider the quark star to undergo a period of enhanced spin-down over several days. We find that the Quark-Nova model can account for the spin-down and at the same time the enhanced 2–10 keV observed flux without introducing any new physics to the model.  相似文献   

12.
In this paper, we study the weak deflection angle in the spacetime of improved Schwarzschild black hole using the method derived by Gibbons and Werner. To do so, we derive the optical curvature from the optical metric and calculate deflection angle in weak field limits by using the Gauss–Bonnet theorem. Moreover, we study the effect of the plasma medium on the weak gravitational lensing using the Gauss–Bonnet theorem. Furthermore, we also study the graphical analysis of the deflection angle in both the plasma and non-plasma mediums. Moreover, we obtain the bound on greybody for improved Schwarzschild black hole.  相似文献   

13.
最近Gentile等研究了超新星核区从核物质到夸克物质的一级相变.沿着他们的工作,本文研究从两味夸克物质到三味夸克物质的相变过程.我们发现相变时标小于10-7秒.超新星的中心温度和核区的中微子总能量明显增大,这不仅会增加超新星爆发的成功机会,而且会提高复活激波的能量,同时会影响新生中子星的冷却.核区存在Schwarzschild对流.  相似文献   

14.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   

15.
A broad sample of computed realistic equations of state of superdense matter with a quark phase transition is used to construct a series of models of neutron stars with a strange quark core. The integral characteristics of the stellar configurations are obtained: gravitational mass, rest mass, radius, relativistic moment of inertia, and red shift from the star's surface, as well as the mass and radius of the quark core within the allowable range of values for the central pressure. The parameters of some of the characteristic configurations of the calculated series are also given and these are studied in detail. It is found that a new additional region of stability for neutron stars with strange quark cores may exist for some models of the equation of state.  相似文献   

16.
In the framework of the MIT bag model we consider absolutely stable strange quark matter consisting of u, d, and s quarks and electrons. For a realistic range of parameters of the quark bag we compute the threshold density for the appearance of strange quark matter that is realized on the surface of self-sustaining strange stars. On the basis of twelve calculated equations of state we give a detailed study of the series of configurations of strange stars consistent with the best known observational data. We show that the binding energy of the models depends essentially on the quark-gluon interaction constant c.Translated fromAstrofizika, Vol. 37, No. 3, 1994.The authors are grateful to E. V. Chubaryan and A. M. Atoyan for assistance in overcoming the information blockade. The present paper was written in the framework of area 46/101 93-353, supported by the Ministry of Higher Education and Science of the Republic of Armenia.  相似文献   

17.
In this work, we first obtain the hydrostatic equilibrium equation in dilaton gravity. Then, we examine some of the structural characteristics of a strange quark star in dilaton gravity in the context of Einstein gravity. We show that the variations of dilaton parameter do not affect the maximum mass, but variations in the cosmological constant lead to changes in the structural characteristics of the quark star. We investigate the stability of strange quark stars by applying the MIT bag model with dilaton gravity. We also provide limiting values for the dilaton field parameter and cosmological constant. We also study the effects of dilaton gravity on the other properties of a quark star such as the mean density and gravitational redshift.We conclude that the last reported value for the cosmological constant does not affect the maximum mass of a strange quark star.  相似文献   

18.
在模拟超新星演化时,考虑非奇异一奇异夸克相变因素,与没有考虑奇异相变的情况相比,得到了更强的激波.这可能是奇异相变增加了星核区对流不稳定性所致在本文的计算环境里,一阶奇异夸克相变的结果使具有128MO铁星核的WW(88)模型爆发,打破了瞬发机制只能使约1.1MO铁星核模型爆发的上限,并支持了戴子高等人所作出的奇异夸克相变能提高超新星爆发机会的论断.  相似文献   

19.
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued to be quark stars. Submillisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. We focus on the formation of such submillisecond pulsars in this paper. A new approach to the formation of a submillisecond pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have a sufficiently high spin-down luminosity and satisfy the conditions for pair production and sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the stars to be detected.
As a comparison, an accretion spin-up process (for both neutron and quark stars) is also investigated. It is found that quark stars formed through the AIC process can have shorter periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in the future, it could be a quark star.  相似文献   

20.
Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, (a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; (b) measuring the size and shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment, one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be precise enough due to enormous progress of observational facilities) while for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Reissner–Nordstrom or Schwarzschild–de-Sitter metrics for better fits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号