共查询到20条相似文献,搜索用时 15 毫秒
1.
Christian Marx 《Astronomische Nachrichten》2020,341(10):1043-1053
The derivation of the phenomena in Hipparchus' Commentary on the phenomena of Aratus and Eudoxus from the star positions of his presumed star catalog is investigated under the assumption of their determination by a star globe. As most of Hipparchus' star coordinates are not available, they are reconstructed from the star catalog in Ptolemy's Almagest. Data consistent with the assumed determination of the phenomena are identified by a statistical method for the elimination of erroneous data; the parameters underlying this determination and the data accuracy are estimated by adjustment theory. The results indicate that, for the majority of the data under investigation, an accurate determination by a globe can be assumed. The estimated values of the parameters, the obliquity of the ecliptic and the observer's latitude, agree with information from historical sources and with values found in previous investigations of Hipparchus' data. Moreover, in most instances, the conducted analysis substantiates a strong relation between Ptolemy's and Hipparchus' star data under investigation. 相似文献
2.
“干支回推法”是针对中国历史时期所特有的干支材料而设计的新天文年代学方法.以一组假设的材料为例,系统地给出了该方法的完整求解过程.指出该方法的优势在于准确高效,能有效地处理某些年代学难题.此外,除材料的公历日期外还能将当时的历法细节一同迭代解出. 相似文献
3.
K. Tsvetkova M. Tsvetkov P. Bhm M. Steinmetz W.R. Dick 《Astronomische Nachrichten》2009,330(8):878-884
We present an inventory ofthe Carte du Ciel (CdC) plates stored in the Astrophysical Institute Potsdam. The Potsdam CdC zone (+32° to +39°) was divided into 1232 areas and about 2200 plates from the first and second epochs were obtained within the framework of the CdC project. At present, only 977 plates (45% of all) are stored in AIP, the others got lost during the Second World War. The plates for the first epoch measurements had been obtained during the period 1893 May– 1900 February. The plates for the second epoch (1913 August–1924 February) can be separated into two time intervals according to the observer and the observing method used: from 1913 August till 1914 July, and from 1916 February to 1924 February. The present work aims to provide online access to the plate information, given in the plate catalogue and is the first step to online access to the plate images digitized with flatbed scanners. 相似文献
4.
As two very controversial surveys of the rock formation “Teufelstein” exist in literature (H. Haupt versus H.M. Maitzen as well as W. Schlosser), a photographic documentation of solar and lunar rising and setting points throughout a whole year as well as a remeasurement with a solar compass was carried out on the spot. The result is that the formation is not an accurate solar marker but could only have served as a warning peg for the summer solstice setting point (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
R.D. Dagkesamanskii 《Astronomische Nachrichten》2007,328(5):395-404
The first radio astronomical investigations in the Lebedev Physical Institute are described. Some details of the large radio telescopes construction in Pushchino Radio Astronomy Observatory as well as the most significant scientific results obtained with them are quoted in the paper, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
George Rieke 《Astronomische Nachrichten》2023,344(8-9):e20230065
Major advances in infrared astronomy have been enabled by new technologies-from the first example of infrared astronomy using the vacuum thermocouple to the expansion of the field into the thermal infrared using the Ge:Ga bolometer. The introduction of high-performance detector arrays had an even more profound influence through the James Webb Space Telescope: it is the rapid and exciting development of these arrays that built the case for this major investment in breakthrough astronomy. The arrays were developed in defense-oriented aerospace firms, making the mechanisms for delivering them to astronomers eccentric. This article describes this formative era for infrared astronomy with arrays and how it led to the incredible devices now strutting their stuff on James Webb Space Telescope. 相似文献
7.
8.
The interpretation of the strong 14C variation around AD 775 as one (or several) solar super‐flare(s) by, e.g., Usoskin et al. (2013) is based on alleged aurora sightings in the mid AD 770s in Europe: A red cross /crucifix in AD 773/4/6 from the Anglo‐Saxon Chronicle, inflamed shields in AD 776 (both listed in the aurora catalogue of Link 1962), and riders on white horses in AD 773 (newly proposed as aurora in Usoskin et al. 2013), the two latter from the Royal Frankish Annals. We discuss the reports about these three sightings in detail here. We can show that all three can be interpreted convincingly as halo displays: The red cross or crucifix is formed by the horizontal arc and a vertical pillar of light (either with the Sun during sunset or with the moon after sunset); the inflamed shields and the riders on white horses were both two mock suns, especially the latter narrated in form of a Christian adaptation of the antique dioscuri motive. While the latter event took place early in AD 774 (dated AD 773 in Usoskin et al. 2013), the two other sightings have tobe dated AD 776, i.e. anyway too late for being in connection with a 14C rise that started before AD 775. We also sketch the ideological background of those sightings and there were many similar reports throughout that time. In addition, we present a small drawing of a lunar halo display with horizontal arc and vertical pillar forming a cross for shortly later, namely AD 806 June 4, the night of full moon, also from the Anglo‐Saxon Chronicle; we also show historic observations of halo phenomena (mock suns and crosses) from G. Kirch and Hevelius – and a modern photograph. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
We present facsimiles of some of the scientifically and historically most relevant papers published in Astronomische Nachrichten/Astronomical Notes (AN) between 1821 and 1938. Almost all of these papers were written and printed in German and it is sometimes not completely straightforward to find these original works and then to cite the historically correct version, e.g. in case of a series of articles or editorial letters. It was common during the early years that many contributions were made in form of letters to the editor. We present a summary for these original works with an English translation of their titles. Among the highlights are the originals of the discovery of stellar parallaxes by FriedrichWilhelm Bessel, the discovery of the solar cycle by Heinrich Schwabe, the discovery of the planet Neptune by Johann Gottfried Galle, the first ever measured stellar radial velocity by Hermann Vogel, the discovery of radio emission from the Sun by Wilsing and Scheiner, the first ever conducted photoelectric photometry of stars by Paul Guthnick and up to the pioneering work by Karl Schwarzschild, Ejnar Hertzsprung, Erwin Finlay Freundlich and others. As a particular gimmick we present the still world record holding shortest paper ever published; by Johannes Hartmann in AN 226, 63 (1926) on Nova Pictoris. Our focus is on contributions in the early years and published until 1938 near the verge of the second world war (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
H.W. Duerbeck 《Astronomische Nachrichten》2009,330(6):568-573
This article gives a brief overview of 400 years of research in the field of novae and related stars. Important objects, first applications of various observing techniques, and early ideas of the interpretation of phenomena are listed. Also, the historical evolution of the classification of novae and related stars (supernovae, dwarf novae), as well as their use as distance indicators is discussed (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Hoyt & Schatten (1998) claim that Simon Marius would have observed the sun from 1617 Jun 7 to 1618 Dec 31 (Gregorian calendar) all days, except three short gaps in 1618, but would never have detected a sunspot – based on a quotation from Marius in Wolf (1857), but mis‐interpreted by Hoyt & Schatten. Marius himself specified in early 1619 that for one and a half year... rather few or more often no spots could be detected... which was never observed before (Marius 1619). The generic statement by Marius can be interpreted such that the active day fraction was below 0.5 (but not zero) from fall 1617 to spring 1619 and that it was 1 before fall 1617 (since August 1611). Hoyt & Schatten cite Zinner (1952), who referred to Zinner (1942), where observing dates by Marius since 1611 are given but which were not used by Hoyt & Schatten. We present all relevant texts from Marius where he clearly stated that he observed many spots in different form on and since 1611 Aug 3 (Julian) = Aug 13 (Greg.) (on the first day together with Ahasverus Schmidnerus); 14 spots on 1612 May 30 (Julian) = Jun 9 (Greg.), which is consistent with drawings by Galilei and Jungius for that day, the latter is shown here for the first time; at least one spot on 1611 Oct 3 and/or 11 (Julian), i.e. Oct 13 and/or 21 (Greg.), when he changed his sunspot observing technique; he also mentioned that he has drawn sunspots for 1611 Nov 17 (Julian) = Nov 27 (Greg.); in addition to those clearly datable detections, there is evidence in the texts for regular observations. For all the information that can be compared to other observers, the data from Marius could be confirmed, so that his texts are highly credible. We also correct several shortcomings or apparent errors in the database by Hoyt & Schatten (1998) regarding 1612 (Harriot), 1615 (Saxonius, Tard´e), 1616 (Tard´e), 1617–1619 (Marius, Riccioli/Argoli), and Malapert (for 1618, 1620, and 1621). Furthermore, Schmidnerus, Cysat, David & Johann Fabricius, Tanner, Perovius, Argoli, and Wely are not mentioned as observers for 1611, 1612, 1618, 1620, and 1621 in Hoyt & Schatten. Marius and Schmidnerus are among the earliest datable telescopic sunspot observers (1611 Aug 3, Julian), namely after Harriot, the two Fabricius (father and son), Scheiner, and Cysat. Sunspots records by Malapert from 1618 to 1621 show that the last low‐latitude spot was seen in Dec 1620, while the first high‐latitude spots were noticed in June and Oct 1620, so that the Schwabe cycle turnover (minimum) took place around that time, which is also consistent with the sunspot trend mentioned by Marius and with naked‐eye spots and likely true aurorae. We consider discrepancies in the Hoyt & Schatten (1998) systematics, we compile the active day fractions for the 1610s, and we critically discuss very recent publications on Marius which include the following Maunder Minimum. Our work should be seen as a call to go back to the historical sources. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
R.D. Davies 《Astronomische Nachrichten》2007,328(5):436-442
The paper describes the early endeavours by radioastronomers to detect the weak signature of the Zeeman effect in interstellar neutral hydrogen clouds in an effort to measure the Galactic magnetic field strength. The search is set in the context of the neutral hydrogen programme at Jodrell Bank. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
13.
14.
Randall K. Smith 《Astrophysics and Space Science》2006,305(3):321-324
The Chandra X-ray observatory, one of NASA’s “Great Observatories,” provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on Chandra along with their current calibration, as well as the Chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations. 相似文献
15.
The strong 14C increase in the year AD 774/5 detected in one German and two Japanese trees was recently suggested to have been caused by an impact of a comet onto Earth and a deposition of large amounts of 14C into the atmosphere (Liu et al. 2014). The authors supported their claim using a report of a historic Chinese observation of a comet ostensibly colliding with Earth's atmosphere in AD 773 January. We show here that the Chinese text presented by those authors is not an original historic text, but that it is comprised of several different sources. Moreover, the translation presented in Liu et al. is misleading and inaccurate. We give the exact Chinese wordings and our English translations. According to the original sources, the Chinese observed a comet in mid January 773, but they report neither a collision nor a large coma, just a long tail. Also, there is no report in any of the source texts about “dust rain in the daytime” as claimed by Liu et al. (2014), but simply a normal dust storm. Ho (1962) reports sightings of this comet in China on AD 773 Jan 15 and/or 17 and in Japan on AD 773 Jan 20 (Ho 1962). At the relevant historic time, the Chinese held that comets were produced within the Earth's atmosphere, so that it would have been impossible for them to report a “collision” of a comet with Earth's atmosphere. The translation and conclusions made by Liu et al. (2014) are not supported by the historical record. Therefore, postulating a sudden increase in 14C in corals off the Chinese coast precisely in mid January 773 (Liu et al. 2014) is not justified given just the 230Th dating for AD 783 ± 14. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
R. Arlt J. Rendtel P. Brown V. Velkov W. K. Hocking J. Jones 《Monthly notices of the Royal Astronomical Society》1999,308(3):887-896
The June Boötid meteor shower (sometimes referred to as the Draconids) surprised a number of regular and casual observers by an outburst with maximum zenithal hourly rates (ZHRs) near 100 on 1998 June 27 after a quiescent period of several decades. A total of 1217 June Boötid meteors were recorded during regular visual meteor observations throughout this outburst. An average population index of r =2.2±0.10 was derived from 1054 shower magnitude estimates. The broad activity profile with ZHR>40 lasting more than 12 h and the large spread of apparent radiants in 1998 resemble the 1916 and 1927 outbursts. The peak time is found to be at about λ ⊙ =95°.7 (2000.0); peak ZHRs are of the order of 200, whereas reliable averages reach only 81±7. The period of high ZHRs covered by a single observer implies a full width at half-maximum of 3–4 h. The resulting maximum flux of particles causing meteors brighter than +6.5 mag is between 0.04 and 0.06 km−2 h−1 . The average radiant from photographic, radar and visual records is α =224°.12, δ =+47°.77. The observed activity outbursts in 1916, 1927 and 1998 are not related to the orbital period or the perihelion passages of the parent comet 7P/Pons–Winnecke. These are probably a consequence of the effects of the 2:1 resonance with Jupiter. 相似文献
17.
A large variation in 14C around AD 775 has been considered to be caused by one or more solar super‐flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakır in Turkey near the Turkish‐Syrian border), which were not only red, but also green‐yellow – being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super‐flares causing the 14C increase around AD 775: There are several reports about low‐ to mid‐latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi‐)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 – always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD ∼733 to ∼823, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles – reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked‐eye sunspots, we discuss two more Schwabe cycles until AD ∼844. The 14C record (from both Intcal and Miyake et al. 2013a) is anti‐correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
We revisit a strange representation of the Sagittarius constellation painted on a door arch of a tomb in Kashmir. We show that it is a very strong case of a representation of Kepler's supernova (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
J. Chapman D.L. Neuhuser R. Neuhuser M. Csikszentmihalyi 《Astronomische Nachrichten》2015,336(6):530-544
Given that a strong 14C variation in AD 775 has recently been suggested to be due to the largest solar flare ever recorded in history, it is relevant to investigate whether celestial events observed around that time may have been aurorae, possibly even very strong aurorae, or otherwise related to the 14C variation (e.g. a suggested comet impact with Earth's atmosphere). We critically review several celestial observations from AD 757 to the end of the 770s, most of which were previously considered to be true, and in some cases, strong aurorae; we discuss in detail the East Asian records and their wording. We conclude that probably none among the events after AD 770 was actually an aurora, including the event in AD 776 Jan, which was misdated for AD 774 or 775; the observed white qi phenomenon that happened above the moon in the south‐east was most probably a halo effect near the full Moon – too late in any case to be related to the 14C variation in AD 774/5. There is another report of a similar (or identical) white qi phenomenon above the moon, reported just before a comet observation and dated to AD 776 Jan; the reported comet observed by the Chinese was misdated to AD 776, but actually sighted in AD 767. Our critical review of East Asian reports of aurorae circa AD 775 shows some very likely true Chinese auroral displays observed and reported for AD 762; there were also several events prior to AD 771 that may have been aurorae but are questionable. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
We present a few newly found old sunspot observations from the years AD 1708, 1709, and 1710, which were obtained by Peter Becker from Rostock, Germany. For 1709, Becker gave a detailed drawing: he observed a sunspot group made up of two spots on January 5, 6, and 7, and just one of the two spots was observed on January 8 and 9. We present his drawing and his explanatory text. We can measure the latitude and longitude of these two spots and estimate their sizes for all five days. While the spots and groups in 1708 and the spot on four of the five days in January 1709 were known before from other observers (e.g. Hoyt & Schatten 1998), the location of the spots in early January 1709 were not known before, so that they can now be considered in reconstructed butterfly diagrams. The sunspots detected by Becker on 1709 January 5 and 1710 September 10 were not known before at all, as the only observer known for those two dates, La Hire, did not detect that spot (group). We estimate new group sunspot numbers for the relevant days, months, and years. The time around 1708–1710 is important, because it documents the recovery of solar activity towards the end of the Maunder Grand Minimum. We also show two new spot observations from G. Kirch for 1708 September 13 and 14 as described in his letter to Wurzelbaur (dated Berlin AD 1708 December 19). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献