首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.  相似文献   

2.
南沙海区及其周缘中-新生代岩浆活动及构造意义   总被引:16,自引:3,他引:13  
通过对南沙海区及其周缘地区中-新生代以来4个主要地质时期即燕山期、喜山早期、喜山晚期一幕和二幕各种类型岩浆岩的发育特征(包括时空分布、地球化学及构造环境)的综合分析,重构了研究区中-新生代岩浆活动的演化历程:燕山期(侏罗纪到白垩纪)在南沙西面和西南面陆区以中酸性岩浆活动为主,代表中生代东亚陆缘火山岩带的南段。同时在南沙与加里曼丹之间广泛发育的是基性-超基性岩,是在俯冲过程中折返到浅部的古南海洋壳碎片。喜山早期(古新世至始新世)岩浆活动微弱。喜山晚期一幕(晚渐新世至中中新世)在加里曼丹—卡加延一带岩浆活动相对重新活跃,西段主要有英安岩、花岗闪长岩、安山岩、闪长岩等,东段主要为玄武安山岩,但规模较小,似乎不足以构成与古南海俯冲伴生的火山岩带。喜山晚期二幕(晚中新世至第四纪)岩浆活动出现高峰,为大规模的中基性火山喷发,与燕山期及喜山早期截然不同,在中南半岛南部和加里曼丹岛中-北部尤为广泛,可能是该区出现上涌的地幔热团的指示。  相似文献   

3.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

4.
墨西哥中新生代岩浆作用与太平洋板块向东俯冲消减作用及晚白垩-始新世的拉腊米期造山运动有关,岩浆作用控制了矿床的分布规律。文章通过综合分析大量墨西哥中新生代岩浆岩和矿床资料,讨论了岩浆活动规律及构造活动和成矿作用的关系。墨西哥主要有5个岩浆活动时期,分别为晚古生代岩浆作用、早-中侏罗世岩浆作用、白垩世岩浆作用、古近纪岩浆作用、中新世岩浆作用。墨西哥的成矿作用主要与拉腊米期岩浆活动有关(约80 Ma—40 Ma),中新生代的矿床明显分成晚侏罗世(J3)、早白垩世(K1)、晚白垩世(K2)、古新世(E1)、始新世(E2)、渐新世(E3)、中新世(N1)等地质时期。古太平洋板块、法拉隆板块和科科斯板块等三大板块俯冲消减形成3个俯冲成矿系列,即从沿海到内陆依次发育有IOCG型铁铜金成矿带→斑岩型铜钼金成矿带→浅成低温热液型银金多金属成矿带,分别代表太平洋古板块、法拉隆板块和科科斯板块向北美板块从俯冲挤压到碰撞后伸展的岩浆成矿环境。  相似文献   

5.
V.E. Camp  R.J. Griffis 《Lithos》1982,15(3):221-239
Igneous rocks in the Sistan suture zone have characteristics that can be correlated with important tectonic events. A Late Cretaceous ocean basin is recorded by ophiolites now exposed in numerous mélange zones. Subduction beneath the Afghan block is indicated by Late Cretaceous-Paleocene calc-alkaline volcanics. Collision of the Lut block with the subduction complex in the middle Eocene produced widespread deformation and was followed by the emplacement of late Eocene-early Oligocene calc-alkaline granitic batholiths that probably formed by widespread anatexis of marine sediments. A dominantly Oligocene magmatic event is represented by widespread alkaline volcanics and minor intrusions that appear to be related to major transcurrent faults. Miocene calc-alkaline activity was limited to sporadic volcanism in the north and minor intermediate intrusions farther south. These units are largely underformed and not related to any major faults. The youngest magmatic event is recorded by late Miocene-Pliocene mafic flows that are weakly alkaline, clearly related to right-lateral faults and probably were derived from a deep crustal or upper mantle source.  相似文献   

6.
The Tertiary magmatic rocks of the Sierra Madre del Sur (SMS) are broadly distributed south of the Trans-Mexican Volcanic Belt (TMVB) and extend to the southern continental margin of Mexico. They represent magmatic activity that originated at a time characterized by significant changes in the plate interactions in this region as a result of the formation of the Caribbean plate and the southeastward displacement of the Chortis block along the continental margin of southwestern Mexico. The change from SMS magmatism to an E–W trending TMVB volcanism in Miocene time reflects the tectonic evolution of southwestern Mexico during these episodes of plate tectonic rearrangement.The distribution and petrographic characteristics of the magmatic rocks of the SMS define two belts of NW orientation. The first is represented by the nearly continuous coastal plutonic belt (CPB), which consists of batholiths and stocks of predominantly felsic composition. The second belt is inland of the first and consists of discontinuously distributed volcanic fields with piles of andesitic to rhyolitic flows, as well as epiclastic and pyroclastic materials. These two belts were emplaced along a continental crust segment constituted by a mosaic of basements with recognizable petrologic and isotopic differences. These basements originated during different tectono-thermal events developed from the Proterozoic to the Mesozoic.Major and trace element data of the SMS magmatic rocks define a clear sub-alkaline tendency. Variations in the general geochemical behavior and in the Sr and Nd isotopic ratios indicate different degrees of magmatic differentiation and/or crustal contamination. These variations, specially in the inland Oligocene volcanic regions of Guerrero and Oaxaca states, seem to have been controlled by the particular tectonic setting at the time of magmatism. In northwestern Oaxaca greater extension related to transtensional tectonics produced less differentiated volcanic rocks with an apparently lower degree of crustal contamination than those of northeastern Guerrero.The geochronologic data produced by us up to now, in addition to those previously reported, indicate that the Tertiary magmatic rocks of the SMS range in age from Paleocene to Miocene. The general geochronologic patterns indicate a southeastward decrease in the age of igneous activity, rather than a gradual northeastward migration of the locus of magmatism toward the present-day TMVB. SMS magmatic rocks exposed to the west of the 100°W meridian are dominantly Late Cretaceous to Eocene, while those to the east range from Oligocene to Miocene, also following a southeastward age-decreasing trend. Paleocene and Eocene magmatic rocks of the western region of the SMS seem to keep a general NNW trend similar to that of the Tertiary magmatic rocks of the Sierra Madre Occidental (SMO). In the eastern region of the SMS the Oligocene magmatic rocks show a trend that roughly defines an ESE orientation. The change in the trend of arc magmatism may be the effect of the landward migration of the trench, for a given longitude, as a result of the displacement of the Chortis block. The transtensional tectonic regime developed in Oligocene time in NW Oaxaca probably accentuated this trend by facilitating magma generation and ascent in these northerly regions.The geochronologic data of the SMS, in conjunction with those of the TMVB, suggest that there is a spatial and temporal magmatic gap in south central Mexico between 97 and 100°W longitude during late Oligocene and middle Miocene time (24–16 Ma). This magmatic gap is interpreted in terms of a combination of the relatively rapid change in the subducted slab geometry after the passage of the Chortis block from a moderate to a shallow angle and the time needed for the mantle wedge to mature sufficiently to produce magmas.  相似文献   

7.
In the external units of the Sardinian Variscides Nappe Zone, volcanic and volcanoclastic successions of Middle Ordovician age follow Lower Paleozoic calc-alkaline magmatism developed at the northern Gondwana margin. We present geochemical and zircon U–Pb isotopic data for the Truzzulla Formation, a low-to-medium-grade metamorphic volcanic–volcanoclastic succession belonging to the Monte Grighini Unit, the deepest unit in the Nappe Zone. Geochemical and radiometric data allow us to define a Late Ordovician (Katian) magmatic (volcanic) event of calc-alkaline affinity. These new data, in conjunction with previously published data, indicate that in the Sardinian Variscides, the age of Lower Paleozoic Andean-type calc-alkaline magmatism spans from Middle to Late Ordovician. Moreover, the age distribution of calc-alkaline volcanics and volcanoclastic rocks in the Nappe Zone is consistent with a diachronous development of Middle–Late Ordovician Andean-type magmatic arc through the portion of the northern Gondwanian margin now represented by the Sardinian Variscides. This reconstruction of the Sardinian Variscides reflects the complex magmatic and tectonic evolution of the northern margin of Gondwana in the Lower Paleozoic.  相似文献   

8.
Abstract

Along the Periadriatic Lineament in the Alps and the Sava-Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian-Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic-Sava-Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African-Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopie composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic-Sava-Vardar magmatic belt originated along a consuming plate margin. Based on isotopie systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle-lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic-Sava-Vardar magmatic belt was related to the Africa-Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

9.
《Geodinamica Acta》2002,15(4):209-231
Along the Periadriatic Lineament in the Alps and the Sava–Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian–Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic–Sava–Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African–Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopic composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic–Sava–Vardar magmatic belt originated along a consuming plate margin. Based on isotopic systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle–lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic–Sava–Vardar magmatic belt was related to the Africa–Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt.  相似文献   

10.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

11.
Cenozoic magmatic activity in northern Chile led to the formation of two contrasting porphyry copper belts: (1) a Paleocene-Early Eocene belt comprising small porphyry copper deposits (e.g., Lomas Bayas) of normal calc-alkaline affinity; and (2) a Late Eocene-Early Oligocene belt hosting huge porphyry copper deposits (e.g., Chuquicamata) of adakitic affinity. Although the first belt comprises both volcanic and plutonic rocks (andesitic-basaltic and rhyolitic lavas and tuffs, and associated sub-volcanic porphyries and felsic stocks), the latter only includes intrusions (mostly granodioritic types, including porphyry copper deposits). We suggest that the Late Eocene-Early Oligocene belt formed when fast and oblique convergence between the South America and Farallon plates led to flat subduction and direct melting of the subducting plate, hence giving rise to plutonic rocks of adakitic affinity. The absence of volcanism, under prevailing compressional conditions, prevented the escape of SO2 from the adakitic, sulfur-rich, highly oxidized magmas ("closed porphyry system"), which allowed formation of huge mineral deposits. On the contrary, coeval volcanic activity during formation of the Paleocene-Early Eocene calc-alkaline porphyries allowed development of "open systems", hence to outgassing, and therefore, to small mineral deposits.  相似文献   

12.
东南亚加里曼丹新生代金成矿作用及成矿动力学   总被引:1,自引:0,他引:1  
李碧乐  李永胜  王东  丁清峰 《世界地质》2006,25(2):129-134,146
对加里曼丹岛区域地质背景、金成矿作用与新生代岩浆弧关系研究认为,该区浅成低温热液金矿床与新生代岩浆弧内晚渐新世—中中新世钙碱性岩浆活动存在着密切的时空及成因联系。其动力学机制为,始新世—中新世期间印度—澳大利亚板块向欧亚板块俯冲引起的地幔物质向南东方向的流动导致早渐新世亚洲边缘发生裂解,裂解作用又导致南中国海板块向加里曼丹岛北缘俯冲。俯冲过程中加里曼丹岛北缘在晚渐新世—中中新世发生大规模的构造岩浆活动及浅成低温热液金成矿作用。成岩成矿作用是在总体挤压背景体制下的局部拉张环境下进行的。  相似文献   

13.
The Sorkhe‐Dizaj iron oxide–apatite deposit in the Cenozoic Alborz‐Azarbaijan magmatic belt, NW Iran, is hosted mainly by a Late Eocene to Oligocene quartz‐monzonitic body, and subordinately in the Eocene volcanic and volcanoclastic sequences. The Sorkhe‐Dizaj intrusive body is an I‐type granitoid of the calc‐alkaline series. Mineralization is associated with actinolization, K‐feldspar, sericitic, propylitic, and tourmaline alteration types. The orebodies are massive, banded, stockwork, and breccia in shape and occur mainly along the fault zones within the quartz‐monzonitic intrusion, volcanic, and volcanoclastic rocks. Ore minerals dominantly comprise magnetite, apatite, and monazite, as well as minor amounts of chalcopyrite, bornite, and pyrite. Four major paragenetic stages are discriminated in the mineralization including early, oxide, sulfide, and late stage. The Sorkhe‐Dizaj deposit is similar in the aspects of host rock lithology, alteration, and mineralogy to the Kiruna‐type deposits associated with minor Cu sulfide minerals. Spatial and temporal association of the mineralization with the Late Eocene–Early Oligocene quartz‐monzonite intrusive body suggests that the ore fluid was probably related to magmatic activity.  相似文献   

14.
Andean orogenic processes controlled the spatial and temporal distribution of the magmatic and sedimentary record. This contribution integrates new U/Pb zircon ages, heavy mineral analyses and biostratigraphic constraints from the Neogene sedimentary record of the fore‐arc and intra‐arc basins and volcano‐plutonic rocks of southwestern Colombia, to reconstruct these orogenic processes. The results reveal continuous arc magmatism since the Late Oligocene, with a major post‐Middle Miocene magmatic peak and exhumation. When integrated with other geological constraints, the tectonic evolution of the margin includes Eocene‐Oligocene oblique convergence with limited magmatic activity, followed by the initiation of a Late Oligocene‐Early Miocene arc that migrated to the east in the Middle Miocene, when it experienced a major increase in magmatic activity, crustal deformation, exhumation and thickening. This orogenic evolution is related to the shallowing of the slab dip due to the subduction of the Neogene Nazca Plate.  相似文献   

15.
Eocene to late Miocene magmatism in the central Peruvian high-plain (approx. between Cerro de Pasco and Huancayo; Lats. 10.2–12°S) and east of the Cordillera Occidental is represented by scattered shallow-level intrusions as well as subaerial domes and volcanic deposits. These igneous rocks are calc-alkalic and range from basalt to rhyolite in composition, and many of them are spatially, temporally and, by inference, genetically associated with varied styles of major polymetallic mineralization. Forty-four new 40Ar–39Ar and three U/Pb zircon dates are presented, many for previously undated intrusions. Our new time constraints together with data from the literature now cover most of the Cenozoic igneous rocks of this Andean segment and provide foundation for geodynamic and metallogenetic research.The oldest Cenozoic bodies are of Eocene age and include dacitic domes to the west of Cerro de Pasco with ages ranging from 38.5 to 33.5 Ma. South of the Domo de Yauli structural dome, Eocene igneous rocks occur some 15 km east of the Cordillera Occidental and include a 39.34 ± 0.28 Ma granodioritic intrusion and a 40.14 ± 0.61 Ma rhyolite sill, whereas several diorite stocks were emplaced between 36 and 33 Ma. Eocene mineralization is restricted to the Quicay high-sulfidation epithermal deposit some 10 km to the west of Cerro de Pasco.Igneous activity in the earliest Oligocene was concentrated up to 70 km east of the Cordillera Occidental and is represented by a number of granodioritic intrusions in the Milpo–Atacocha area. Relatively voluminous early Oligocene dacitic to andesitic volcanism gave rise to the Astabamba Formation to the southeast of Domo de Yauli. Some stocks at Milpo and Atacocha generated important Zn–Pb (–Ag) skarn mineralization. After about 29.3 Ma, magmatism ceased throughout the study region. Late Oligocene igneous activity was restricted to andesitic and dacitic volcanic deposits and intrusions around Uchucchacua (approx. 25 Ma) and felsic rocks west of Tarma (21–20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive.Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental.After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha.Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas.Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and prior to cessation of the arc. Eocene to early Oligocene mineralization also occurred, but was restricted to a broad east–west corridor from Uchucchacua to Milpo–Atacocha, indicating a major upper-plate metallogenetic control.  相似文献   

16.
Most of the known large gold deposits in Iran are located along the Sanandaj–Sirjan Zone, western Iran, which hosts a wide range of gold deposit types. Gold deposits in the belt, hosted in upper Paleozoic to upper Mesozoic volcano‐sedimentary sequences of lower greenschist to lower amphibolite metamorphic grade, appear to represent mainly orogenic and intrusion‐related gold deposit types. The largest resource occurs at Muteh, with smaller deposits/occurrences at Zartorosht, Qolqoleh, Kervian, Qabaqloujeh, Kharapeh, and Astaneh. Although a major part of the gold deposits in the Sanandaj–Sirjan Zone are related to metamorphic devolatilization, some deposits including Muteh and Astaneh are related to short‐lived disruptions in an extensional tectonic regime and are associated with magma generation and emplacement. The age of gold ore formation in the orogenic gold deposits is Late Cretaceous to Tertiary, reflecting peak‐metamorphism during regional Cretaceous–Paleocene convergence and compression. The Oligocene to Pliocene age of most intrusion‐related gold systems is consistent with the young structural setting of the gold ore bodies; these deposits are sequestered along normal faults, correlated with Middle to Late Tertiary extensional tectonic events. This relationship is comparable to the magmatic‐metallogenetic evolution of the Urumieh‐Dokhtar magmatic arc, where the number of different types of gold‐copper deposits and the magnitude of the larger ones followed development of a magmatic arc. The appropriate explanation may be related to two different stages of gold mineralization consisting of a first compressional phase during the Late Cretaceous to Early‐Middle Tertiary, which is related to orogenic gold mineralization in the Qolqoleh, Kervian, Qabaqloujeh, Kharapeh, and Zartorosht deposits, and the extensional phase during the Eocene to Pliocene that is recognized by young intrusion‐related gold mineralization in the Muteh and Astaneh deposits.  相似文献   

17.
Between the Late Jurassic and the Middle Miocene, widespread magmatism, tectonic events and hydrothermal mineralization characterized the geological evolution of the Atacama segment of the South American Andes. A characteristic feature of this zone is the coincidence in time and space between subduction-generated igneous activity, crustal deformation and mineralization in the magmatic arcs, which formed longitudinal belts migrating eastward.Mineralization in the last 140 Ma is generally restricted to four longitudinal metallogenic belts, in which hydrothermal activity was channelled along crustal-scale faults (1) the Atacama Fault System, along which Early Cretaceous Cu-Au-bearing breccia pipes, veins and stockwork were formed; (2) the Inca do Oro Belt, which contains Upper Cretaceous low sulphur precious metal epithermal mineralization, and Middle Eocene Cu-Mo-Au-bearing breccia pipes; (3) the West Fissure System, which hosts Upper Eocene to Early Oligocene porphyry copper deposits and high sulphur precious metal epithermal mineralization; and (4) the Maricunga Belt, when contains Upper Oligocene to Middle Miocene high sulphur precious metal epithermal deposits and Au-rich porphyry mineralization.  相似文献   

18.
Basic volcanic rocks from the West Nain area of the Urumieh–Dokhtar Magmatic Assemblage demonstrate significant subduction-related geochemical characteristics; these along with the new age data obtained for the volcanic rocks shed new light on the geodynamic evolution of the Iranian segment of Alpine–Himalayan orogeny. The late Oligocene (26.5 Ma) high-Nb basic volcanic rocks are likely to represent a transient rather enriched asthenospheric mantle underlying the otherwise dominantly Eocene–early Oligocene West Nain island arc. Lithospheric mantle geochemical signatures of the low-Zr volcanic rocks (20.6 Ma) and high-Th volcanic rocks (19.7 Ma) imply replacement of the underlying mantle. The substitution of asthenospheric mantle by a lithospheric mantle wedge might have been associated with – or perhaps caused by – an increase in the subduction rate. Culmination of the West Nain magmatism into slab melting that produced the early Miocene (18.7 Ma) adakitic rocks is compatible with subsequent ascent that triggered slab decompression melting.  相似文献   

19.
The Takab-Delijan (T-D) magmatic belt in NW Iran is a part of the Zagros orogenic belt which has imminence with epithermal, porphyry and carlin types of mineralization. This magmatic belt has been classified into 3 different phases by radiometric dating, including early (16–24 Ma), middle-late (10–12 Ma), and late Miocene (8 > Ma), among which the gold/basemetal mineralization is related to the first two phases in this area. The lower Miocene phase formed during the formation of a metamorphic core complex and upwelling basement in the form of synextentional magmatism. This magmatic event is shaped in an extensional regime within shallow marine basins which are correlated with the limestone formation of Qom Formation (QF) in a pre- to syncollisional environment. This volcanism (edifice) acceded to the surface rapidly via NW extensional faults and made stratovolcanic structures in the Takab and Delijan areas. These complexes have been formed by sequences of pyroclastic and lava flows with a composition of dacite to andesite and trachyandesite that are crosscut by microdiorite porphyritic subvolcanic. These epithermal-porphyr systems are related to the Cu ± Au ± Ag deposits. The main phase of gold mineralization is related to the magmatic phase with middle-late Miocene and the age of ~10.7–12 Ma. The geological environment for forming this magmatic phase is related to the extensional- compressional regime by the right-lateral strike-slip shear zone during shortening, folding, and thickening in syn- to post-collisional events. The magmatism is in the form of dacitic to rhyolitic domes on the surface. The gold/silver mineralization is associated with the hydrothermal metal suite of As, Sb, Te, Pb, and Zn, and it is characterized by very low Cu contents of subvolcanic. The final stage of tectonic evolution events is the thrusting of prior normal faults and exhumation in the late Miocene-Pliocene age which is together with post-collision magmatism.  相似文献   

20.
《International Geology Review》2012,54(14):1801-1816
We present new geochronological and geochemical data for granites and volcanic rocks of the Erguna massif, NE China. These data are integrated with previous findings to better constrain the nature of the massif basement and to provide new insights into the subduction history of Mongol–Okhotsk oceanic crust and its closure. U–Pb dating of zircons from 12 granites previously mapped as Palaeoproterozoic and from three granites reported as Neoproterozoic yield exclusively Phanerozoic ages. These new ages, together with recently reported isotopic dates for the metamorphic and igneous basement rocks, as well as Nd–Hf crustal-residence ages, suggest that it is unlikely that pre-Mesoproterozoic basement exists in the Erguna massif. The geochronological and geochemical results are consistent with a three-stage subduction history of Mongol–Okhotsk oceanic crust beneath the Erguna massif, as follows. (1) The Erguna massif records a transition from Late Devonian A-type magmatism to Carboniferous adakitic magmatism. This indicates that southward subduction of the Mongol–Okhotsk oceanic crust along the northern margin of the Erguna massif began in the Carboniferous. (2) Late Permian–Middle Triassic granitoids in the Erguna massif are distributed along the Mongol–Okhotsk suture zone and coeval magmatic rocks in the Xing’an terrane are scarce, suggesting that they are unlikely to have formed in association with the collision between the North China Craton and the Jiamusi–Mongolia block along the Solonker–Xra Moron–Changchun–Yanji suture zone. Instead, the apparent subduction-related signature of the granites and their proximity to the Mongol–Okhotsk suture zone suggest that they are related to southward subduction of Mongol–Okhotsk oceanic crust. (3) A conspicuous lack of magmatic activity during the Middle Jurassic marks an abrupt shift in magmatic style from Late Triassic–Early Jurassic normal and adakite-like calc-alkaline magmatism (pre-quiescent episode) to Late Jurassic–Early Cretaceous A-type felsic magmatism (post-quiescent episode). Evidently a significant change in geodynamic processes took place during the Middle Jurassic. Late Triassic–Early Jurassic subduction-related signatures and adakitic affinities confirm the existence of subduction during this time. Late Jurassic–Early Cretaceous post-collision magmatism constrains the timing of the final closure of the Mongol–Okhotsk Ocean involving collision between the Jiamusi–Mongolia block and the Siberian Craton to the Middle Jurassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号