共查询到20条相似文献,搜索用时 15 毫秒
1.
The Asmari Formation(a giant hydrocarbon reservoir)is a thick carbonate sequence of the Oligocenee Miocene in the Zagros Basin,southwest of Iran.This formation is exposed at Tang-e-Lendeh in the Fars interior zone with a thickness of 190 m comprising medium and thick to massive bedded carbonates.The age of the Asmari Formation in the study area is the late Oligocene(Chattian)eearly Miocene(Burdigalian).Ten microfacies are defned,characterizing a gradual shallowing upward trend;the related environments are as follows:open marine(MF 8e10),restricted lagoon(MF 6e7),shoal(MF 3e5),lagoon(MF 2),and tidal fat(MF 1).Based on the environmental interpretations,a homoclinal ramp consisting of inner and middle parts prevails.MF 3e7 are characterized by the occurrence of large and small porcelaneous benthic foraminifera representing a shallow-water setting of an inner ramp,infuenced by wave and tidal processes.MF 8e10,with large particles of coral and algae,represent a deeper fair weather wave base of a middle ramp setting. 相似文献
2.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves. 相似文献
3.
The Rajang Group sediments in central Borneo form a very thick deep-water sequence which was deposited in one of the world's largest ancient submarine fans. In Sarawak, the Lupar and Belaga Formations form the Rajang Group, characterised by turbidites and large debris flows, deposited in an interval of at least 30 Ma between the Late Cretaceous (Maastrichtian) and late Middle Eocene. Borneo is one of the few places in SE Asia where sediments of this age are preserved. Heavy mineral assemblages and detrital zircon U-Pb dating permit the Rajang Group to be divided into three units. The Schwaner Mountains area in SW Borneo, and West Borneo and the Malay Tin Belt were the main source regions and the contribution from these source areas varied with time. Unit 1, of Late Cretaceous to Early Eocene age, is characterised by zircon-tourmaline-dominated heavy mineral assemblages derived from both source areas. Unit 2, of Early to Middle Eocene age, has zircon-dominated heavy mineral assemblages, abundant Cretaceous zircons and few Precambrian zircons derived primarily from the Schwaner Mountains. Unit 3, of Middle Eocene age, has zircon-tourmaline-dominated heavy mineral assemblages derived from both sources and reworked sedimentary rocks. There was limited contemporaneous magmatism during deposition of the Rajang Group inconsistent with a subduction arc setting. We suggest the Rajang Group was deposited north of the shelf edge formed by the Lupar Line which was a significant strike-slip fault. 相似文献
4.
Miocene Tectonic Evolution from Dextral-Slip Thrusting to Extension in the Nyainqentanglha Region of the Tibetan Plateau 总被引:4,自引:0,他引:4 下载免费PDF全文
WU Zhenhan Patrick J. BAROSH ZHAO Xun WU Zhonghai HU Daogong LIU Qisheng 《《地质学报》英文版》2007,81(3):365-384
Dextral-slip in the Nyainqentangiha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentangiha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentangiha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhunzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, Damxung-Yangbajain and Angan graben systems that pass east of the Nyainqentangiha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime. 相似文献
5.
New brachiopods (Dimerelloidea, Rhynchonellida) from Lower Jurassic (?lower Hettangian) hemipelagic sediments of the Swiss National Park in south-eastern Engadine are described: Sulcirostra doesseggeri sp. nov. and Carapezzia engadinensis sp. nov. Sulcirostra doesseggeri is externally similar to S. fuggeri (Frauscher 1883), a dubious species, that could not be included in a comparative study, because relevant samples no longer exist. A single specimen was tentatively assigned to Sulcirostra ?zitteli (Böse 1894) by comparison of its external morphology with S. zitteli from the type locality. The partly silicified brachiopods are associated with sponge spicules, radiolarians and crinoid ossicles. Macrofossils are rare: dictyid sponges, gastropods, bivalves, crustaceans, shark teeth and scales of an actinopterygian fish. The Lower Jurassic sediments (Alpisella beds, a basal member of the Allgäu Formation) preserving the brachiopods belong to the Ortler nappe (Upper Austroalpine nappes). The exact age of the Alpisella beds is not known, as index fossils are lacking. Their stratigraphic position above the Rhaetian Kössen Formation and below the ammonite-dated Trupchun beds suggests a very Early Jurassic, probably early Hettangian age for the new brachiopod fauna. The new species of Sulcirostra and Carapezzia are confined to a very small geographic area, a peculiarity also observed in other Early Jurassic dimerelloid brachiopods. These brachiopods presumably adapted to current-dominated submarine highs, where their shells could not accumulate, except when trapped in submarine cavities or re-deposited in submarine fans. Transport by turbidity currents is suggested for the Early Jurassic dimerelloids from the Engadine. Problems with the generic definition of Sulcirostra and the higher rank classification of Carapezzia are discussed. 相似文献
6.
7.
The Oligocene–Miocene carbonate record of the Zagros Mountains, known as the Asmari Formation, constitutes an important hydrocarbon reservoir in southern Iran. This marine carbonate succession, which developed under tropical conditions, is explored in terms of larger foraminiferal biostratigraphy, facies analysis and sequence stratigraphy in a new section at Papoon cropping out in the western Fars sub-basin, in the south-east of the Zagros belt. Facies analysis shows evidence of re-working and transport of skeletal components throughout the depositional system, interpreted here as a carbonate ramp. The foraminifera-based biozones identified include the Globigerina–Turborotalia cerroazulensis–Hantkenina Zone and Nummulites vascus–Nummulites fichteli Zone, both of Rupelian age, the Archaias asmaricus–Archaias hensoni–Miogypsinoides complanatus Zone of Chattian age and the ‘Indeterminate’ Zone of Aquitanian age. The vertical sedimentary evolution of the formation exhibits a progressive shallowing of the facies belts and thus the succession is interpreted as a high-rank low-order regressive systems tract. This long-lasting Rupelian–Aquitanian regressive event is in accordance with accepted global long-term eustatic curves. Accordingly, long-term eustatic trends would have been a factor controlling accommodation during the deposition of the Asmari Formation studied in the western Fars sub-basin. 相似文献
8.
Marcelo S. de la Fuente Aldo M. Umazano Juliana Sterli José L. Carballido 《Cretaceous Research》2011,32(4):527-537
A new chelid species (Prochelidella cerrobarcinae nov. sp.) are described from the Aptian-Albian? Puesto La Paloma Member, Cerro Barcino Formation, northern of Chubut Province, Argentina. The basal section of this member, which bears the turtle remains, is composed of tuffaceous mudstones with plane parallel lamination, asymmetrical ripples and a chert intercalation suggesting sub-aqueous deposition in a relatively shallow lacustrine environment. Pr. cerrobarcinae nov. sp. is represented by post-cranial remains of several specimens that not only represents the oldest pleurodiran chelid record in the world but, together with the chelid remains of Albian Lightning Ridge, New South Wales, Australia, indicates that chelid diversification began well before the final fragmentation of southern Gondwana. 相似文献
9.
The La Peña alkaline complex (LPC) of Miocene age (18–19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400–2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW–SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N–S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R′), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW–SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by dikes cross-cutting the clinopyroxenite, (3) a malignite facies that causes a small breccia in the clinopyroxenite, (4) a central syenite facies that develops breccias at the contact with the clinopyroxenite and, finally, (5) porphyry necks and a system of radial dikes intruding all units. At the moment of the emplacement different mechanisms would have acted, they summarized in: 1) opening of discontinuities synchronous to the magma circulation as the principal mechanism for formation of dikes and conduits; 2) stoping processes, that play an important role in the development of the breccia zone and enabling an efficient transference of material during the emplacement of the syenitic magma and 3) shear-related deformation (regional stress), affected the internal fabric of the facies, causing intracrystalline deformation and submagmatic flow, which is very evident in the central syenite intrusive. The kinematic analysis of shear planes allows proposing that emplacement of the LPC took place in a transtensive regime, which would have occurred in the back-arc of the Andes orogen, during a long period spanning from Miocene to the present, of the compressive deformation responsible, westward and at the same latitude, for the development of the Aconcagua fold and thrust belt. 相似文献
10.
Andrea Festa Kei Ogata Gian Andrea Pini Yildirim Dilek Giulia Codegone 《International Geology Review》2015,57(5-8):540-562
In the Northern Apennines of Italy, mud-rich olistostromes (sedimentary mélanges) occur at different stratigraphic levels within the late Oligocene–early Miocene sedimentary record of episutural/wedge-top basins. They are widely distributed along the exhumed outer part of the Ligurian accretionary complex, atop the outer Apenninic prowedge, over an area about 300 km long and 10–15 km wide. Olistostromes represent excellent examples of ancient submarine mass-transport complexes (MTCs), consisting of stacked cohesive debris flows that can be directly compared to some of those observed in modern accretionary wedges. We describe the internal arrangement of olistostrome occurrences in the sector between Voghera and the Monferrato area, analysing their relationships with mesoscale liquefaction features, which are commonly difficult to observe in modern MTCs. Slope failures occurred in isolated sectors along the wedge front, where out-of-sequence thrusting, seismicity, and different pulses of overpressured tectonically induced fluid flows acted concomitantly. Referring to the Northern Apennines regional geology, we also point out a gradual lateral rejuvenation (from late Oligocene to early Miocene) toward the SE and an increasing size and thickness of the olistostromes along the strike of the frontal Apenninic prowedge. This suggests that morphological reshaping of the outer prowedge via mass-transport processes balanced, with different pulses over a short time span, the southeastward migration and segmentation of accretionary processes. The latter were probably favoured by the occurrence in the northwestern part of the Northern Apennines of major, inherited palaeogeographic features controlling the northward propagation of the prowedge. Detailed knowledge of olistostromes, as ancient examples of MTCs related to syn-sedimentary tectonics and shale diapirism, and of their lateral variations in term of age and size, provides useful information in regard to better understanding of both the tectono-stratigraphic evolution of the Apenninic prowedge and the submarine slope failures in modern accretionary wedges. 相似文献
11.
The Miocene Kahramanmara? Peripheral Foreland Basin (KPFB) resemble to classic foreland basin model, with small differences. In the classic model, both the accretionary wedge and foredeep extend lengthways parallel to the plate margin. In addition, accretionary wedge includes wedge top basin or piggy back basin that extends parallel to foredeep. However, the accretionary wedge of the KPFB contains small half-graben type basins that obliquely intersect the plate margin between the Arabian Plate and the Anatolide–Taurides Platform (due to the irregular shape of the plate boundary). Tectonic lineaments controlled the shape and orientation of these basins and larger main depocentre of the KFPB, which were predominantly filled with deep-sea sediments. This paper focuses on the provenance of features of the KFPB, predominantly was fed from the northern basin margin, while also aiming to resolve the complex basin evolution that occurred during the Miocene.Clasts of Palaeozoic and Mesozoic limestone and ophiolites are common components of the confined deep-water clastic systems, which evolved as elongated trenches in the north-western sector of the KPFB during the Early-Middle Miocene. During the Middle Miocene, continuous thrusting of the northern basin margin to south caused depocentre migration to south-east, through the basin interior. At that time, the north-east and central depocentres of the KPFB were filled primarily by clasts of ophiolite and metamorphic units. The tectonic control on basin fill architecture can be observed anywhere in the KFPB. The principal tectonic features controlled the geometry and orientation of the canyon, the channel geometry of the deep-water slope on the northern basin margin, the frequency and distribution of slump-slide-debris flows and the overall pattern of sedimentation cycles in the stratigraphy of the slope and the central basin floor. Some basin sectors have continuously reactivated and as a result, different sediment entry points with substantial local accumulation of sediment and deformation have evolved on the slope and basin floor. Three scales of provenance were used to investigate the source rock: (a) field-based observation and analysis of conglomerate clasts, (b) modal analysis of sandstone facies and (c) geochemical analysis, all of which were in agreement. 相似文献
12.
István Cziczer Imre Magyar Radovan Pipík Madelaine Böhme Stjepan Ćorić Koraljka Bakrač Mária Sütő-Szentai Miklós Lantos Edit Babinszki Pál Müller 《International Journal of Earth Sciences》2009,98(7):1741-1766
Life and depositional environments in the sublittoral zone of Lake Pannon, a large, brackish Paratethyan lake from the Late
Miocene, were reconstructed from fossils and facies of the Szák Formation. This formation is exposed in several, roughly coeval
(9.4–8.9 Ma) outcrops, located along strike of the paleo-shelf-break in northwestern Hungary. The silty argillaceous marl
of the formation was deposited below storm wave base, at 20–30 to 80–90 m water depth. The abundance of benthic organisms
indicates that the bottom water was usually well oxygenated. Interstitial dysoxia, however, may have occurred immediately
below the sediment–water interface, as evidenced by occasional preservation of trace fossils such as Diplocraterion. The fauna comprised endemic mollusks, including brackish cockles of the subfamily Lymnocardiinae, dreissenid mussels (Congeria), and highly adapted, uniquely large-sized deep-water pulmonate snails (planorbids and lymnaeids). Ostracods were dominated
by endemic species and, in some cases, endemic genera of candonids, leptocytherids, cypridids, and loxoconchids. Fish remnants
include a sciaenid otolith and the oldest skeletal occurrence of Perca in Europe. The phytoplankton comprised exclusively endemic coccolithophorids, mostly endemic dinoflagellates (prevailingly
Spiniferites), and cosmopolitan green algae. The Late Miocene fauna and flora of Lake Pannon were in many ways similar to the modern Caspian
biota, and in particular cases can be regarded as its precursor. 相似文献
13.
The Thalanga volcanic‐hosted massive sulfide deposit occurs in the Cambro‐Ordovician Mt Windsor Subprovince in northern Queensland. The orebody comprises steeply dipping, stratiform, sheet‐like, polymetallic massive sulfide lenses. Overall, the volcanic facies architecture at Thalanga is dominated by quartz‐ and/or feldspar‐phyric lavas and synvolcanic intrusions that comprise coherent facies and in situ and resedimented autoclastic facies. Systematic phenocryst logging (mineralogy, abundance, size) has been used to discriminate separate emplacement units of rhyolite in the footwall and dacite in the hangingwall. Some of the petrographically different rhyolite and dacite types can also be distinguished using immobile‐element geochemistry. Rhyolitic lavas and intrusions in the footwall are weakly to strongly altered. Apparent clastic textures resulting from hydrothermal alteration and metamorphism are widely developed in the coherent facies. Genuine clastic textures are characterised by clasts with randomly oriented internal laminar or banded fabric (e.g. rotated, flow‐laminated clasts), marked and consistent differences in quartz phenocryst abundance and/or size range between clasts and matrix, and normal grading. Mass‐flow‐emplaced, rhyolitic breccia units delineate palaeo‐sea‐floor positions in the footwall that are potentially prospective for exhalative massive sulfide mineralisation. A comparison of the distribution of clastic and coherent facies with the geometry of strongly altered zones in the footwall indicates that intense hydrothermal fluid flow was independent of the facies arrangement. The massive sulfide lenses conformably overly altered footwall rhyolite and occur in a distinctive facies association which includes coarse quartz‐phenocryst‐rich rhyolitic sills with peperitic contacts and crystal‐rich polymictic breccia. The hangingwall to the orebody consists of largely unaltered dacitic lavas and synvolcanic intrusions and minor dacitic pumice breccia, dacitic breccia and polymictic volcanic breccia. The facies architecture shows that the Thalanga massive sulfide deposit formed in a below‐storm‐wave‐base depositional environment on top of an elevated, lava‐dominated, rhyolitic volcanic centre. A modern analogue for the setting of the Thalanga massive sulfide is the PACMANUS hydrothermal field on the crest of the dacite lava‐dominated Pual Ridge in the eastern Manus backarc basin (Papua New Guinea). 相似文献
14.
Xingchen Yang Mengni Ye Zhen Wang Yangfan Luzhou Fuchao Na 《International Geology Review》2018,60(7):825-843
Major and trace element, zircon U–Pb and Hf-isotope data are reported for mafic intrusions and host granite from the Kachang pluton (North Yingjiang of SW Yunnan) in the Tengchong Terrane, in order to investigate their sources, petrogenesis and tectonic implications. The zircon U–Pb age of the mafic rocks (~55 Ma) is identical to that of the host granite (56.7 ± 0.6 Ma). The mafic rocks have high MgO concentrations (up to 13.43 wt.%) at low SiO2 contents (low to 42.73 wt.%) and slight negative to positive εHf(t) values (?2.26 to +0.59). They are enriched in LILE and LREEs and depleted in HFSEs, which can be explained as melts derived from a enriched mantle, with some crustal contamination. The host granite have high SiO2 contents (69.18–72.65 wt.%), highly negative εHf(t) values (?9.08 to ?5.14), suggesting mainly derived from an ancient crustal source. Field observations, geochronology, geochemistry and zircon Hf isotopic compositions point to a complex petrogenesis, where enriched mantle- and crust-derived magma mixing was coupled with crystal fractionation, thus explaining the genetic link between mafic and felsic magmas, result of mafic magma upwelling triggered by the subduction rollback of the Neotethyan slab. Our new data, along with the data reported (especially zircon U–Pb dating and Lu–Hf isotope data) in the Tengchong Terrane, indicate that the spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern and central Tibet. 相似文献
15.
16.
Michelle L. Coombs John C. Eichelberger Malcolm J. Rutherford 《Contributions to Mineralogy and Petrology》2000,140(1):99-118
Between 1953 and 1974, approximately 0.5 km3 of andesite and dacite erupted from a new vent on the southwest flank of Trident volcano in Katmai National Park, Alaska,
forming an edifice now known as Southwest (or New) Trident. Field, analytical, and experimental evidence shows that the eruption
commenced soon after mixing of dacite and andesite magmas at shallow crustal levels. Four lava flows (58.3–65.5 wt% SiO2) are the dominant products of the eruption; these contain discrete andesitic enclaves (55.8–58.9 wt% SiO2) as well as micro- and macro-scale compositional banding. Tephra from the eruption spans the same compositional range as
lava flows; however, andesite scoria (56–58.1 wt% SiO2) is more abundant relative to dacite tephra, and is the explosively erupted counterpart to andesite enclaves. Fe–Ti oxide
pairs from andesite scoria show a limited temperature range, clustered around 1000 °C. Temperatures from grains found in dacite
lavas possess a wider range; however, cores from large (>100 μm) magnetite and coexisting ilmenite give temperatures of ∼890 °C,
taken to represent a pre-mixing temperature for the dacite. Water contents from dacite phenocryst melt inclusions and phase
equilibria experiments on the andesite imply that the two magmas last resided at a water pressure of 90 MPa, and contained
∼3.5 wt% H2O, equivalent to 3 km depth if saturated. Unzoned pyroxene and sodic plagioclase in the dacite suggest that it likely underwent
significant crystallization at this depth; highly resorbed anorthitic plagioclase from the andesite suggests that it originated
at greater depths and underwent relatively rapid ascent until it reached 3 km, mixed with dacite, and erupted. Diffusion profiles
in phenocrysts suggest that mixing preceded eruption of earliest lava by approximately one month. The lack of a compositional
gap in the erupted rock suite indicates that thorough mixing of the andesite and dacite occurred quickly, via disaggregation
of enclaves, phenocryst transfer from one magma to another, and direct mixing of compositionally distinct melt phases.
Received: 22 September 1999 / Accepted: 4 April 2000 相似文献
17.
《Chemie der Erde / Geochemistry》2021,81(2):125766
Early Cenozoic magmatism in the eastern Sakarya Zone (NE Turkey) provides an important constraint on the regional tectono-magmatic evolution of the region. Early Eocene syn-collisional adakitic rocks are observed as small stocks with outcropping areas commonly less than 10 km2. This study presents petrography, whole-rock geochemistry and Sr-Nd-Pb isotope data, as well as in-situ 40Ar/39Ar age constraints on one of these adakitic andesites in the Altınpınar area of Gümüşhane, and discusses source region, petrological processes and geodynamic setting prevailed during their genesis. Andesites commonly show microlitic porphyric and vitrophyric porphyric textures, and include significant amounts of mafic microgranular enclaves (MMEs). Plagioclase, hornblende, Fe-Ti oxides and minor pyroxene are the main mineral phases. In-situ 40Ar-39Ar amphibole dating constrains the cooling age of andesites into a time span from 52.8 ± 1.3–48.8 ± 1.9 Ma. Andesites are medium to high-K calc-alkaline and display most of the signatures typical of those of the adakites. They are characterized by moderate MgO (1.7–4.1 wt%), low Y (9−14 ppm), Yb (0.9–1.5 ppm), and HREE and high Sr (325−964 ppm) contents, and high Sr/Y (36–76) ratios. 87Sr/86Sr(t) (0.704948−0.705100) and 143Nd/144Nd(t) (0.512588−0.512628) ratios are in the isotopic range of the adakites. All these geochemical and isotopic data suggest that the parental magma of adakitic andesites has been produced by partial melting of oceanic basalts under amphibole-eclogite facies conditions during the breakoff of the northern Neotethyan oceanic slab. 相似文献
18.
Kaloko-Honokōhau National Historical Park (KAHO) is a coastal sanctuary on the western side of the Island of Hawai‘i that was established in 1978 to preserve, interpret, and perpetuate traditional Native Hawaiian culture and activities. KAHO contains a variety of culturally and ecologically significant water resources and water-related habitat for species that have been declared as threatened or endangered by the U.S. Fish and Wildlife Service, or are candidate threatened or endangered species. These habitats are dependent on coastal unconfined groundwater in a freshwater-lens system. The coastal unconfined-groundwater system is recharged by local infiltration of rainfall but also may receive recharge from an inland groundwater system containing groundwater impounded to high altitudes. The area inland of and near KAHO is being rapidly urbanized and increased groundwater withdrawals from the inland impounded-groundwater system may affect habitat and water quality in KAHO, depending on the extent of connection between the coastal unconfined groundwater and inland impounded-groundwater. An investigation of the geochemistry of surface-water and groundwater samples in and near KAHO was performed to evaluate the presence or absence of a connection between the inland impounded- and coastal unconfined-groundwater systems in the area. Analyses of major ions, selected trace elements, rare-earth elements, and strontium-isotope ratio results from ocean, fishpond, anchialine pool, and groundwater samples were consistent with a linear mixing process between the inland impounded and coastal unconfined-groundwater systems. Stable isotopes of water in many samples from the coastal unconfined-groundwater system require an aggregate recharge altitude that is substantially higher than the boundary between the coastal unconfined and inland impounded systems, a further indication of a hydrologic connection between the two systems. The stable isotope composition of the freshwater component of water samples from KAHO indicates that about 25–70% of the freshwater is derived from the inland impounded system. 相似文献
19.
《International Geology Review》2012,54(13):1475-1496
We interpret the voluminous late Eocene–early Oligocene volcanic successions of the north-central Sierra Madre del Sur as the eruptive manifestation of a progressive thermomechanical maturation of the crust, driven by sustained igneous activity that affected the region since the early Eocene. Widespread Eocene magmatism and injection of mantle-derived melts into the crust beneath the Michoacán-Puebla area promoted the development of a hot zone extending to upper crustal levels, and the formation of a mature intracrustal magmatic system. Within this context, the intermediate siliceous compositions of the Tilzapotla, Muñeca, and Goleta explosive centres were generated through fractional crystallization, crustal contamination, and anatexis. In particular, decreasing bulk-rock Sr and Eu concentrations and Nd isotopes with increasing silica in the Tilzapotla and Muñeca suites document an evolution through low-pressure fractional crystallization of plagioclase-dominated assemblages, simultaneous with the assimilation of middle–upper crustal materials. In contrast, marked Eu, Sr, and Ba depletions coupled with high and variable Rb/Nd at constant 143Nd/144Nd in the Goleta rhyolites suggest their derivation from partial melting of biotite-bearing quartz-feldspathic lithologies. Ascent of the thermal anomaly induced by magma emplacement and accumulation at shallow depths shifted the brittle–ductile crustal transition close to the surface, and produced an ignimbrite flare-up through caldera-forming eruptions. A different petrogenetic–volcanologic scenario developed in north-western Oaxaca, where less profuse early–middle Eocene igneous activity and an ancient lower crustal basement made up of refractory granulitic lithologies inhibited the expansion of the hot zone to shallow levels, and constrained magmatic evolution at depth. Here, composite and monogenetic volcanoes with intermediate compositions were produced through high-pressure fractional crystallization and crustal contamination. Specifically, increasing La/Yb and Sm/Yb with increasing silica in the Oaxaca suite, and negative correlations of Nd isotopes with SiO2 at low Rb/Nd, suggest garnet fractionation from parental basalts, coupled with the assimilation of Rb-depleted lower crustal materials. 相似文献
20.
兰坪中-新生代盆地位于青藏高原东南缘的三江造山带中段,受印度-欧亚大陆斜向碰撞相关构造的强烈影响,导致地层序列及时代归属难辨,区域地质与成矿作用认识存在诸多分歧。先期完成的区域地质调查发现,在金顶铅锌矿集区内常见的含石膏岩地层并非前人认为的古新统云龙组的一部分,而是角度不整合于前古新统之上的一套新地层,暂定名为中新统金顶砂泥岩。系统的剖面测量和详细的沉积学研究表明,金顶砂泥岩从下到上由洪积相砾岩、辫状河三角洲相粉-细砂岩夹泥岩和砾岩以及湖泊相粉砂岩夹泥岩组成,石膏层位于砾岩之上。辫状河三角洲相中频繁出现灰绿色、灰黑色粉砂质泥岩及黄铁矿结核层,可能是频繁的区域性挤压作用造成的逆冲-走滑断层使上三叠统基底岩系中古油气藏破裂、泄露所致;该套地层内广泛发育的同沉积逆断层(视正断层)、滑脱褶皱和液化砂脉等软沉积物变形构造,指示沉积盆地发育期间地壳发生了NEE-SWW向缩短。金顶砂泥岩是印度-欧亚大陆碰撞背景下近东西向挤压构造诱发并控制的周缘前陆盆地沉积,时代为中新世。这一认识为深入理解大陆斜向碰撞带构造演化及大规模金属成矿作用提供了新的资料。 相似文献