首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2004,19(1):153-162
In aquatic systems, the bioavailability of an element to microorganisms is greatly influenced by its chemical speciation. The goal of this work was to assess metal toxicity to a green algae (Pseudokirchneriella subcapitata) and a bacterium (Vibrio fisheri) as a function of size fractionation and chemical speciation (using the program MINTEQA2) in contaminated water of the Upper Vistula River. Water samples were collected at 1 reference site, 4 polluted sites and one polluted site on the Vistula's main tributary, the Przemsza River. Toxicity measurements were performed on unfiltered samples and, total dissolved (<1.2 μm), and truly dissolved (<1 kDa) fractions. Trace metal (Cd, Co, Cr, Cu, Mn, Pb, Zn) concentrations were measured in these samples and also in the colloidal fraction (1 kDa–1.2 μm). At the reference site, the low metal concentrations were in agreement with the absence of measurable toxicity. In the polluted section of the river, free metal concentrations were largely below the potential toxic levels for bacteria, which was in agreement with the absence of toxicity. Although Zn2+ was at potentially toxic-level concentrations in total dissolved and truly dissolved fractions in the polluted riverine section, toxicity for algae was observed, only in truly dissolved fractions from two stations. The absence of toxicity in most samples was related to metal association with particles and with low molecular weight ligands as well as the presence of organic ligands (phenol). The reason for toxic effects in two ultrafiltered samples is not clear, but may be related to the elimination of the colloidal organic fraction and thus the eradication of its protective effect occurring in natural samples.  相似文献   

2.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


3.
Fractionation by ultra-filtration of the dissolved organic material (DOM) in the River Beaulieu, with typical concentrations of dissolved organic carbon (DOC) of 7–8 mg C/l, showed it to be mainly in the nominal molecular weight range of 103–105, with 16–23% of the total DOC in the fraction > 105. The molecular weight distribution of DOM in the more alkaline River Test (average DOC, 2 mg C/l) was similar. In the River Beaulieu water, containing 136–314 βg Fe/l in ‘dissolved’ forms, 90% or more of this Fe was in the nominal molecular weight fraction > 105. Experiments showed that DOM of nominal molecular weight <105 could stabilize Fe(III) in ‘dissolved’ forms. The concentrations of ‘dissolved’ Fe in the river water probably reflect the presence of colloidal Fe stabilized by organic material and this process may influence the apparent molecular weight of the DOM. Dissolved. Mn (100–136 βg/l) in the River Beaulieu was mainly in true solution, probably as Mn(II), with some 30% in forms of molecular weight greater than ca 104.During mi xing in the Beaulieu Estuary, DOC and dissolved Mn behave essentially conservatively. This contrasts with the removal of a large fraction of the dissolved Fe (Holliday and LISS, 1976, Est. Coastal Mar. Sci. 4, 349–353). Concentrations of lattice-held Fe and Mn in suspended particulate material were essentially uniform in the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice held fractions decreased markedly with increase in salinity. For Mn the decrease was linear and could be most simply accounted for by the physical mixing of riverborne and marine participates, although the possibility that some desorption occurs is not excluded. The non-linear decrease in the concentration of non-lattice held Fe in particulates reflected the more complex situation in which physical mixing is accompanied by removal of material from the ‘dissolved’ fraction.  相似文献   

4.
A mass balance has been calculated for the elements Li, B, and Sr in the Gulf of Papua from sampling undertaken during 1993 to 1999. Parameters measured included Fly, Kikori, and Purari River inputs of dissolved and particulate phases, removal flux to sediment traps at the base of the continental shelf slope, and century-scale accumulation rates in shelf and slope sediments (derived from excess 210Pb profiles in sediment cores). About 91% of river input Li was in particulate form, and there was conservative behavior of dissolved Li in the salinity gradient of the estuaries. Li accumulation rate in inner-shelf sediments was slightly less than river inputs, suggesting that more than 90% of Li river inputs were trapped in rapid aluminosilicate mud accumulation zones of the inner shelf (<50-m depth). Li removal rate to sediment traps at the base of the slope at ∼1000-m water depth was an order of magnitude smaller than the inner-shelf sedimentation. Export of Li to deep water Coral Sea was estimated to be 1.2 × 108 mol yr−1, and this amount is equivalent to the riverine dissolved Li annual supply rate. About 66% of river input of B was in the particulate phase, and low dissolved B concentrations in freshwater were conservatively mixed with higher concentrations of B in seawater across the salinity gradient. Removal of B to inner-shelf sediments was about 83% of the total river input, indicating a small export of B (1.2 × 108 mol yr−1) to the Coral Sea. About half of the dissolved B input from rivers is sorbed to particles and trapped in inner-shelf sediments. Only 24% of river input of Sr was in particulate form, and low freshwater concentrations of dissolved Sr were conservatively mixed with higher concentrations of Sr in seawater across the salinity gradient. Only 20% of total river inputs of Sr were buried in shelf sediments, and there was a large export (7.3 × 108 mol yr−1) of Sr off the shelf to the Coral Sea. A sediment core from a rapidly accumulating mud deposition zone of the inner shelf shows twofold sympathetic variations in Li, B, and Sr/Ca supply rates over 200- to 1000-yr time intervals.  相似文献   

5.
Behavior of Uranium in the Yellow River Plume (Yellow River Estuary)   总被引:2,自引:0,他引:2  
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol 1-1). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration,234U:238U activity ratio, phosphate (PO4 3–), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 105 mol yr–1. A similarity between variations in dissolved U and PO4 3– with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO4 3– in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO4 3–.  相似文献   

6.
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultrafiltration into 1–30 kDa (HDOM) and 30 kDa–0.2 μm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH) was used to release and quantify lipids and lignin phenols. Stable carbon isotopes, fatty acids and lignin content indicated shifts in sources with terrigenous material in the river and turbid region and a predominantly algal/planktonic signal in the lower estuary and coastal ocean. Thermochemolysis with TMAH released significant amounts of short chain fatty acids (C9–C13), not seen by traditional alkaline hydrolysis, which appear to be associated with the macromolecular matrix. Lignin phenol distributions in HDOM, VHDOM and particles followed predicted sources with higher concentrations in the river and turbid region of the estuary and lower concentrations in the coastal ocean. TOM comprised 12% of HDOM within the coastal ocean and up to 73% of HDOM within the turbid region of the estuary. In the coastal ocean, TOM from high molecular weight DOM comprised 4% of total DOC. The annual flux of TOM from the Delaware Estuary to the coastal ocean was estimated at 2.0×1010 g OC year−1 and suggests that temperate estuaries such as Delaware Bay can be significant sources of TOM on a regional scale.  相似文献   

7.
This paper presents new data on chromium mineralization in a fenitized xenolith in Mt. Kaskasnyunchorr in the Khibiny alkaline massif (Kola Peninsula, Russia) and summarizes data on Cr mineralogy in the Khibiny Mountains. Protolith silicates that contained Cr3+ admixture are believed to be the source of this element in the fenite. Cr-bearing (maximum Cr2O3 concentrations, wt %, are in parentheses) aegirine (5.8), crichtonite-group minerals (2.1), muscovite (1.3), zirconolite (1.1), titanite (1.0), fluorine-magnesioarfvedsonite (0.8), biotite (0.8), ilmenite (0.6), and aenigmatite (0.6) occur in the fenite. The late-stage spinellides of the FeTi-chromite-CrTi-magnetite series, which are very poor in Mg and Al and which formed after Crrich aegirine and ilmenite, are the richest in Cr (up to 42% Ct2O3). Cr concentrations grew with time during the fenitization process. Unlike minerals in the Khibiny ultramafic rocks where Cr is associated with Mg, Al (it is isomorphic with Cr), and with Ca, chromium in the fenites is associated with Fe, Ti, and V (with which Cr3+ is isomorphic) and with Na in silicate minerals. Cr3+ Mobility of Cr3+ and the unique character of chromium mineralization in the examined fenites were caused by high alkalinity of the fluid.  相似文献   

8.
The present study deals with the direct determination of colloidal forms of iron in river-borne solids from main rivers of the Amazon Basin. The contribution of different forms of colloidal iron have been assessed using ultrafiltration associated with various techniques including electron paramagnetic resonance spectroscopy (EPR), high resolution transmission electron microscopy (HRTEM), and micro proton-induced X ray emission analysis (μPIXE). EPR shows the presence of Fe3+ bound to organic matter (Fe3+-OM) and colloidal iron oxides. Quantitative estimate of Fe3+-OM content in colloidal matter ranges from 0.1 to 1.6 weight % of dried solids and decreases as the pH of the river increases in the range 4 to 6.8. The modeling of the field data with the Equilibrium Calculation of Speciation and Transport (ECOSAT) code demonstrates that this trend is indicative of a geochemical control resulting from the solubility equilibrium of Fe oxyhydroxide phase and Fe binding to organic matter. Combining EPR and μPIXE data quantitatively confirms the presence of colloidal iron phase (min. 35 to 65% of iron content), assuming no divalent Fe is present. In the Rio Negro, HRTEM specifies the nature of colloidal iron phase mainly as ferrihydrite particles of circa 20 to 50 Å associated with organic matter. The geochemical forms of colloidal iron differentiate the pedoclimatic regions drained by the different rivers, corresponding to different major weathering/erosion processes. Modeling allows the calculation of the speciation of iron as mineral, organic and dissolved phases in the studied rivers.  相似文献   

9.
Crystallization of Chromite and Chromium Solubility in Basaltic Melts   总被引:6,自引:3,他引:6  
The equilibrium between chromite and melt has been determinedon four basalts at temperatures of 1200–1400?C over arange of oxygen fugacity (fo2) and pressures of 1 atm and 10kb. The Cr content of chromite-saturated melts at 1300?C and1 atm ranges from 0?05 wt.% Cr2O3 at a log fo2= –3 to1?4 wt.% at a log fo2=–12?8. The Cr2+/Cr3+ of melt increaseswith decreasing fo2 and is estimated by assuming a constantpartitioning of Cr3+ between chromite and melt at constant temperature.The estimated values of Cr2+/Cr3+ in the melt are at fo2 valuesof 4–5 orders of magnitude lower than the equivalent Fe2+/Fe3+values. The Cr/(Cr+Al) of chromite coexisting with melt at constanttemperature changes little with variation of fo2 below log fo2=–6.Five experiments at 10 kb indicate that Cr2O3 dissolved in themelt is slightly higher and the Cr/(Cr + Al) of coexisting chromiteis slightly lower than experiments at 1 atm pressure. Thus variationin total pressure cannot explain the large variations of Cr/(Cr+ Al) that are common to mid-ocean ridge basalt (MORB) chromite. Experiments on a MORB at 1 atm at fo2 values close to fayalite-magnetite-quartz(FMQ) buffer showed that the Al2O3 content of melt is highlysensitive to the crystallization or melting of plagioclase,and consequently coexisting chromite shows a large change inCr/(Cr + Al). It would appear, therefore, that mixing of a MORBmagma containing plagioclase with a hotter MORB magma undersaturatedin plagioclase may give rise to the large range of Cr/(Cr +Al) observed in some MORB chromite.  相似文献   

10.
A series of experiments has been carried out in which a synthetic silicate melt, of composition equivalent to a “U-type” Bushveld Complex parent liquid, was equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151°C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wüstite buffers. The partition coefficient for Cr between bronzite and melt increases with falling temperature along a given oxygen buffer, and decreases with falling oxygen fugacity at a given temperature, showing an overall range from 1.1 to 11.7. The Cr content of the melt in equilibrium with spinel (Cr solubility) decreases with falling temperature and increases with lower oxygen fugacity. This variation may be quantified in terms of temperature-dependent solubility of Cr3+ combined with a changing ratio of Cr3+ to Cr2+ in the melt. Iso-oxidation curves for Cr are approximately parallel to Fe-Si-O buffer curves and to curves for equal Fe3+/Fe2+ determined by Hill and Roeder (1974), and agree within experimental error with the results of Schreiber and Haskin (1976). When the changing oxidation state of Cr is allowed for, the orthopyroxene partition coefficient may be expressed as the sum of the temperature-dependent coefficient for Cr3+ and a partition coefficient of about 1 for Cr2+.The experimental results are used to construct a series of model curves for liquid and bronzite compositional variations during fractional crystallization of a Bushveld parent liquid. Trends for Cr variation are shown to depend critically upon oxygen fugacity, and on whether the liquid is saturated with chromite. The position of the peritectic between chromite and orthopyroxene is shown to be very sensitive to oxygen fugacity within one and a half log units of the QFM buffer. This observation may explain the contrasting distribution of chromite seams in the Bushveld Complex, where chromite occurs within bronzitite-norite sequences, and in the Stillwater Complex in which chromite is restricted to olivine cumulate layers.  相似文献   

11.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

12.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

13.
In order to examine the mixing behavior of dissolved uranium (U) in estuaries under different suspended particulate matter (SPM) regimes, three laboratory-based experiments were conducted by mixing seawater with river water containing different concentrations of SPM. Comparing this study with other field and laboratory-based experiments, dissolved U behaved differently depending upon the concentration of SPM. When SPM concentrations are >?0.8 g/L in the Yellow River, desorption/dissolution of U from SPM becomes predominant and dissolved U is enriched relative to the theoretical mixing line. However, when SPM concentrations are <?0.8 g/L, dissolved U behaves conservatively with some extent of removal during estuarine mixing. 234U/238U activity ratios were somewhat constant showing no measurable isotopic fractionation during physical mixing and U sorption/desorption to/from particles. Addition of dissolved 238U desorbed/dissolved from SPM during the annual Yellow River water-sediment regulation scheme (Jun 30th–Jul 14th, 2014) was estimated at 6.4?×?1011 dpm, about 9% of the total riverine flux of dissolved 238U during that same period. This study represents a contribution to studies of dissolved U in muddy rivers and estuaries throughout the world. Results reported here provide not only a perspective to better estimate U flux from rivers to the ocean but also new insights into better understanding its estuarine mixing behavior and controlling factors.  相似文献   

14.
《Applied Geochemistry》1997,12(3):291-303
The geochemical effects of microbially mediated degradation of aromatic hydrocarbons were observed as changes in solution composition of an artificial groundwater in packed-sand laboratory columns. Benzene, toluene, and xylene, both individually and in a combined fashion, were used as substrates in biodegradation experiments conducted under oxygenated and anoxic conditions in columns filled with quartz, calcite, or Fe3+-coated quartz sand. Typically, column effluent had increased concentrations of dissolved inorganic C, decreased pH, and decreased concentrations of NO3 and dissolved O2 relative to column influent. Efficiency of CO2 generation was similar for the three different substrates, ranging from 22.5 to 26.6% organic C converted to CO2. When all three substrates were combined, the percentage of CO2 produced fell within the range observed in the single substrate experiments. Nitrate disappearance was more varied as a function of substrate identity, with greatest amounts lost when toluene was the substrate. Calcite dissolved as a result of CO2 generated during the biodegradation reactions, and empirically calculated dissolution rates varied between 1.9 and 4.0 x 10−9 mmol cm−2 s−1. The calcite dissolution rate was slower than the biodegradation rate, as evidenced by excess generation of CO2 relative to Ca2+ production. The decrease in pH was less in experiments with calcite present than in those with quartz sand present due to buffering by calcite dissolution. Dissolution of Fe oxyhydroxides was not observed under any experimental conditions.  相似文献   

15.
Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr^2 in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr^3 in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr^2 solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr^2 between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.  相似文献   

16.
《Applied Geochemistry》2003,18(3):457-470
Metal partitioning depends on the physical–chemical conditions of a system and can be affected by anthropogenic inputs. In this study, the authors report the results of trace metal partitioning between particulate (>1.2 μm), colloidal (1.2 μm–1 kDa) and truly dissolved (<1 kDa) fractions in the polluted section of the Upper Vistula River compared with the non-polluted headwaters. It was found that the salt input in the Vistula River induced a decrease of colloid concentration and the increase of suspended particulate matter. Compared with upstream from the polluted section, the metal concentrations (Co, Cu, Cr, Mn and Zn) in the colloidal fraction were lower. It was mainly due to the rapid colloid coagulation at increased salinity, the competition with ligands and major ions (Ca and Mg) and the weak mobility of metals associated with particles at the pollution sources.  相似文献   

17.
《Applied Geochemistry》2004,19(10):1581-1599
The association of dissolved 90Sr, 239,240Pu and 241Am with natural colloids was investigated in surface waters in the Chernobyl nuclear accident area. A 4-step ultrafiltration (UF) study (<1 kilodaltons (Da), 1–10 kDa, 10–100 kDa, 100 kDa<) showed that 49–83% of 239,240Pu and 76% of 241Am are distributed in colloids of the two size fractions larger than 10 kDa (nominal molecular weight limit of the filter, NMWL), while 90Sr was found exclusively (85–88%) in the lowest molecular size fraction below 1 kDa (NMWL) for the Sahan River water at the highly contaminated area close to the Chernobyl Nuclear Power Plant (ChNPP). Consistent results were obtained by 2-step fractionation (larger than and smaller than 10 kDa (NMWL)) for river and lake waters including other locations within about 30 km away from ChNPP. It is likely that Pu and Am isotopes were preferentially associated with dissolved organic matter of high molecular size, as suggested by the fact that (i) only a few inorganic elements (Mg, Ca, Sr, Si, Mn, Al) were found in the colloidal size ranges, and (ii) the positive correlation between dissolved organic C (DOC) concentrations and UV absorbance at 280 nm, a broad absorption peak characteristic of humic substances (HS) was found. A model calculation on the complexation of Pu and Am with HS as an organic ligand suggests that the complexed form could be dominant at a low DOC concentration of 1 mgC L−1, that is commonly encountered as a lower limit in fresh surface water. The present results suggest the general importance of natural organic colloids in dictating the chemical form of actinides in the surface aquatic environment.  相似文献   

18.
Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L?1 to 130 μg.L?1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L?1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L?1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L?1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.  相似文献   

19.
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world’s largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 μm) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 μg I?1 at the river’s mouth to over 3 μg I?1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river’s variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in, the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays conservative behavior; removal is evident only during anomalous river discharge regimes. ‘Products-approach’ mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.  相似文献   

20.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号