首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Role of trace element partition coefficients in models of andesite genesis   总被引:1,自引:0,他引:1  
Orogenic andesite magmas probably evolve at 1100 to 900°C, have between 1 and 5 wt. % H2O and fO2 above the NiNiO buffer during phenocryst precipitation and may be saturated with a second fluid phase prior to eruption. Consequently, many solid/liquid trace element partition coefficients appropriate to andesites are higher than for basalts, perhaps due to the presence of fewer octahedrally coordinated sites in andesite liquids as well as to lower temperatures.Simple quantitative interpretation of trace element concentration data for orogenic andesites in general or for most specific suites is not possible using available partition coefficients. Fractional crystallization models involving magnetite or amphibole or both seem less at odds with available data than do models invoking equilibration with subducted oceanic crust or overlying peridotite. Critical choices between simple models, or identification of supplementary or more complex processes, require a more rigorous data base than presently available.  相似文献   

3.
Abundance data for Cs, Rb, Tl, Ba, Pb, Sr, the rare earths, Th, U, Zr, Hf, Sn, Nb, Mo, Mn, Cu, Co, Ni, Sc, V, Cr, Ag, Sb and the major elements are reported for two andesites and a dacite from Saipan, nine andesites and a dacite from Bougainville and two andesites from Fiji. The Saipan rocks are low-K varieties and contain notably low abundances of Rb, Ba, Th and U and have rare earth patterns subparallel to chondritic patterns. The Bougainville andesites include low-Si and high-K varieties which have higher concentrations of the large cations. The Fijian samples are close to the average circum-Pacific andesite and have rareearth patterns sub-parallel to those of sedimentary rocks.All the andesites contain characteristically low (< 20 ppm) values for Ni and have Ni/Co ratios < 1, and V/Ni ratios > 10.These data preclude derivation of calc-alkaline rocks by mixing of upper crustal material or by fractional crystallisation from basaltic parents. A two stage model is proposed involving sea-floor spreading and transportation of the oceanic crust down the dipping seismic plane into the mantle where it is remelted to form andesites.  相似文献   

4.
Strontium isotopic data for megacrysts and lavas from six eruptive centers within the Newer Basalts province of southeastern Australia show that megacrysts of clinopyroxene are in isotopic equilibrium with associated basalts, but that megacrysts of kaersutite, ferrokaersutite, orthopyroxene and anorthoclase may exhibit slight disequilibrium with their host basalts. Furthermore, the anorthoclase megacrysts may be either more or less radiogenic than their hosts. The 87Sr/86Sr ratios for 14 basalts from throughout the province vary from 0.7035 to 0.7045 and it is proposed that anorthoclase, amphibole and orthopyroxene megacrysts which crystallized in isotopic equilibrium with one magma may have been caught up in a pulse of a later magma of a different isotopic composition. The variations in the 87Sr/86Sr ratios for the basalts are attributed to variations in the isotopic composition of their source regions. Such isotopic heterogeneity is supported by published data for ultramafic xenoliths which occur in the Newer Basalts lavas.  相似文献   

5.
Based on REE abundances in megacrysts and host basalts and their equilibrium conditions,it has proved that megacrysts may have been produced from the magma derived from the host rocks or of more basic composition.The REE ratios of megacrysts to host rocks may be taken as partition coefficients when both are equilibrium with each other.The crystal fractionation of megacrysts has caused the evolution of REE in the magma.It is obvious that some host basalts are the product of magma evolution after crystal fractionation.According to REE abundances in the host rocks and the partition coefficients between crystal and liquid,the history of crystal fractionation of magma can be traced.  相似文献   

6.
Oceanic tholeiites that have been experimentally reacted with seawater at 500–600° C, 800–1000 bars, have rare earth element (REE) abundances and distribution patterns that are essentially identical to those of the unaltered basalts. Although the data indicate the possibility of some REE leaching and redistribution, the net effects are small and the REE patterns of basalts affected by submarine hydrothermal processes may still be valid petrogenetic indicators.  相似文献   

7.
Twenty six whole rocks, seven matrix and fifty three mineral separates from the compositionally zoned late Quaternary Laacher See tephra sequence (East Eifel, W Germany) were analyzed by instrumental neutron activation. These data document the chemical variation within the Laacher See magma chamber prior to eruption with a highly fractionated phonolite at the top and a more mafic phonolite at its base as derived from other data. Incompatible elements such as Zn, Zr, Nb, Hf, U, light and heavy rare earths are extremely enriched towards the top whereas compatible elements (e.g. Sr, Sc, Co, Eu) are strongly depleted. Semicompatible elements (Ta and some middle REE) are depleted at intermediate levels. This chemical variation is shown by whole rock and matrix data indicating the phonolite liquid was compositionally zoned regardless of phenocryst content. Hybrid rocks (phonolite-basanite) show the largest concentrations for compatible elements. All elements (except Rb) display continuous compositional variations with regard to the stratigraphic position of pumice samples. From these data we are able to distinguish three main units: An early erupted highly fractionated magma, the main volume of evolved phonolite and a mafic phonolite as the final products. The extreme variation of trace element distribution coef ficients (K) for 9 mineral phases with respect to stratigraphic position (resp. matrix composition) cannot be explained by conventional mechanisms. We postulate a significant modification of the trace element content of the phonolite melt by liquid-liquid controlled differentiation processes subsequent to and/or contemporaneous with (fractional) crystallization which caused disequilibrium between phenocrysts and host matrix. Therefore, our “distribution coefficients” deviate from equilibrium partition coefficients equivalent to the amount of this post crystallization modification of the matrix composition. The relationship between varying K and matrix composition is demonstrated by a ΔK-ΔM-diagram (variation of K versus variation of matrix, M). Different parts of this diagram relate to different parameters (T, P, polymerization, complex-building, equilibrium crystallization in a zoned magma column and post crystallization disequilibrium effects) which are responsible for the variation of distribution coefficients in general. The ΔK-ΔM-diagram may allow to distinguish between different processes affecting the distribution coefficients measured in natural volcanic rocks from a differentiating magma system.  相似文献   

8.
Mineral/groundmass partition coefficients for U, Th, Zr, Hf, Ta, Rb, REE, Co and Sc have been systematically measured in olivine, clinopyroxene, amphibole, biotite, Ti-magnetites, titanite, zircon and feldspars, in basaltic to trachytic lavas from alkaline series (Velay, Chaîne des Puys: Massif Central, France and Fayal: Azores). Average partition coefficients are denned within the experimental uncertainty for limited compositional ranges (basalt-hawaiite, mugearites, benmoreite-trachyte), and are useful for trace element modelling. The new results for U, Th, Ta, Zr and Hf partition coefficients show contrasting behaviour. They can thus be used as “key elements” for identifying fractionating mineral phases in differentiation processes (e.g. Ta and Th for amphibole and mica).Partition coefficient may be calculated using the two-lattice model suggested by Nielsen (1985). Such values show a considerably reduced chemical dependence in natural systems, relative to weight per cent D values. The residual variations may be accounted for by temperature or volatile influence. This calculation greatly enhances modelling possibilities using trace elements for comparing differentiation series as well as for predicting the behaviour of elements during magmatic differentiation.  相似文献   

9.
Molar olivine/liquid partition coefficients for Mg, Fe, Mn and Ni are shown to be linearly correlated. These correlations appear to be independent of temperature, pressure and, to some extent, bulk composition and are best explained by the dominance of change-of-state thermodynamics during partitioning. The correlations presented here, when coupled with considerations of olivine stoichiometry, allow (olivine/basalt) partition coeficients of Mg, Fe, Mn and Ni to be predicted if the composition of the basalt is known. Since the correlations hold for major, minor and trace elements and for both compatible and incompatible elements, the inferences drawn from this study appear to have general relevance.  相似文献   

10.
夏群科  潘尤杰 《岩石学报》2000,16(4):485-491
运用傅立叶变换红外光谱技术(FTIR,红外区和近红外区)和质子魔角旋转核磁共振技术(^1HMASNMR)对来自安徽女山,江苏盘石山和河北汉诺坝新生代大恶性玄武岩中的4个歪长石巨晶进行了观察,结果显示,这些巨晶含有结构水,主要以H2O的形式存在,其中3个样品的结构水含量(H2O)分别为405μg/g,915μg/g,μg/g。这些数据和文献中已有的资源表明,名义上无水的长石族矿物可以是地球上的水储库  相似文献   

11.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

12.
Abundances of major elements, rare earth elements, transition metals, alkali metals and alkaline earth metals have been measured in a representative suite of samples from the Pindos (Greece) ophiolitic complex. Our data indicate that the igneous members of the complex are genetically related. An ocean floor origin of the complex is suggested.  相似文献   

13.
14.
This study investigates partitioning of elements between immiscible aluminosilicate and borosilicate liquids using three synthetic mixtures doped with 32 trace elements. In order to get a good spatial separation of immiscible liquids, we employed a high-temperature centrifuge. Experiments were performed at 1,050–1,150°C, 1 atm, in sealed Fe and Pt containers. Quenched products were analysed by electron microprobe and LA ICP-MS. Nernst partition coefficients (D’s) between the Fe-rich and Si-rich aluminosilicate immiscible liquids are the highest for Zn (3.3) and Fe (2.6) and the lowest for Rb and K (0.4–0.5). The plots of D values against ionic potential Z/r in all the compositions show a convex upward trend, which is typical also for element partitioning between immiscible silicate and salt melts. The results bear upon the speciation and structural position of elements in multicomponent silicate liquids. The ferrobasalt–rhyolite liquid immiscibility is observed in evolved basaltic magmas, and may play an important role in large gabbroic intrusions, such as Skaergaard, and during the generation of unusual lavas, such as ferropicrites.  相似文献   

15.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere.  相似文献   

16.
Carbonaceous vein separates from Kenna and Haverö, as well as bulk Kenna, were analyzed by RNAA for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Pd, Os, Rb, Re, Sb, Se, Te, Tl. U, and Zn. The data are reviewed together with four earlier Chicago analyses of bulk ureilites. Linear regressions confirm the presence of two metal components, with the following Cl-normalized ratios: Ir/Ni = 14.6, ≤ 1; Ge/Ni = 5.4, 2.4; Au/Ni = 2.3, 0.9. The high-Ir component is enriched in vein separates and hence belongs to veins; the lowIr component belongs to the ultramafic rock. Vein material is enriched in all elements analyzed by us except Zn, and accounts for most of the C, noble gases, and presumably siderophiles in the meteorite. Most of the properties of ureilites apparently can be explained by the cumulate model of Berkley et al. (1980), with certain modifications. Comparison of ureilites with three other ultramafic rocks from different planets (Earth's mantle, lunar dunite, and Chassigny) suggests that the ureilite parent body had a primitive chondritic composition, similar to C3V chondrites but richer in metal and carbon. It melted, causing depletion of incompatibles to a mean abundance of ~0.02 × Cl and incomplete segregation of metal, FeS, and C. Fractional crystallization or melting of metal in the presence of S and C apparently can explain the fractionations of Ir, Re, Ni, Au, and perhaps Ge, obviating the need for extraneous sources of vein metal or unusual parent-body compositions. Noble gases from the parent material may have been retrapped in carbon during magmatism, provided the system was closed.  相似文献   

17.
We have analyzed 10 H-chondrites for 20 trace elements, using RNAA. The meteorites included 4 of petrologic type 4 and 2 each of types 3, 5 and 6.The data show that H-chondrites are not isochemical. H3's are depleted by some 10% not only in Fe (Dodd, 1976), but also in the siderophiles Os, Re, Ir, Ni, Pd, Au, and Ge. Moreover, the abundance pattern of siderophiles varies systematically with petrologic type. As similar fractionations of REE have been observed by Nakamura (1974), it appears that both the proportions and compositions of the main nebular condensates varied slightly during accretion of the H-chondrites. Thus the higher petrologic types are independent nebular products, not metamorphosed descendants of lower petrologic types.Abundances of highly volatile elements (Cs, Br, Bi, Tl, In, Cd, Ar36) correlate with petrologic type, declining by ≤ 10?3 from Type 3 to Type 6. The trends differ from those for artificially heated Type 3's (Ikramuddinet al., 1977b; Herzoget al., 1979), but agree passably with theoretical curves for nebular condensation. Apparently the low volatile contents of higher petrologic types are a primary feature, not the result of metamorphic loss.The mineralogy of chondrites suggests that they accreted between 405 K (absence of Fe3O4) and 560 K (presence of FeS), and the abundances of Tl, Bi, and In further restrict this interval to 420–500 K. Accretion at 1070 ± 100 K, as proposed by Hutchisonet al. (1979, 1980), leads to some extraordinary problems. Volatiles must be injected into the parent body after cooling, which requires permeation of the body by 1011 times its volume of nebular gas. This process must also achieve a uniform distribution of the less volatile elements (Rb, Cu, Ag, Zn, Ga, Ge, Sn, Sb, Se, F), without freezeout in the colder outer layers.Factor analysis of our data shows 3 groupings: siderophiles (Os, Re, Ir, Ni, Pd, Au, and Ge), volatiles (Ag, Br, In, Cd, Bi, and Tl) and alkalis (Rb and Cs). The remaining 5 elements (U, Zn, Te, Se, and Sb) remain unassociated.  相似文献   

18.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

19.
20.
Summary ?Silicates intergrown with diamonds from 10 diamondites (polycrystalline diamonds, framesites) have been analysed for trace element contents by laser ablation ICP-MS. The diamondites are fine- (< 100 μm) to coarse-grained (> 1 mm) rocks with abundant pores and cavities. The walls of the open cavities are covered by euhedral diamond crystals. Silicates (commonly garnets) are mostly interstitial or occupy the space in cavities and often contain inclusions of euhedral diamonds. Four diamondites contain lilac “peridotitic” garnets with low CaO contents (3.6–5.7 wt%), high Mg-numbers (0.83–0.84) and high Cr2O3 contents (3.9–6.4 wt%). Occasionally, they are accompanied by Cr-diopside. “Peridotitic” garnets have heavy rare earth element-enriched and light rare earth element-depleted chondrite-normalised patterns, occasionally with a small hump at Eu and Sm. The remaining six diamondites contain orange coloured “eclogitic” garnets with low Cr2O3 contents (< 1 wt%). “Eclogitic” garnets can be divided into two subgroups: E-I garnets have high Mg-numbers (0.84–0.85, as high as those of the “peridotitic” garnets) and higher Cr2O3 and TiO2 and lower heavy rare earth element contents than the E-II garnets. The chondrite-normalised trace element patterns of the two subgroups of “eclogitic” garnets are similar to each other, all are depleted in light rare earth elements with respect to the heavy rare earth elements and show significant positive anomalies of Zr and Hf. “Eclogitic” garnets are more depleted in highly incompatible elements (light rare earth elements, Nb and Ta) than the “peridotitic” garnets. Diamondites and their silicates very likely crystallised from a fluid phase. The trace element contents of the hypothetical fluids in equilibrium with the “peridotitic” garnets are similar to the trace element contents of kimberlitic and carbonatitic liquids. Thus, crystallisation of these diamondites from a highly alkaline liquid in the presence of carbonates can be suggested. Hypothetical melts in equilibrium with “eclogitic” garnets are highly magnesian but depleted in light rare earth elements and other highly incompatible elements relative to the typical kimberlitic, lamproitic or carbonatitic liquids. This is an unexpected result because eclogites are richer in trace elements than peridotites and fluids in equilibrium with these rocks should reflect this. The different trace element contents of fluids which precipitated, beside diamonds, “peridotitic” and “eclogitic” garnets, respectively, therefore, must be the result of differences in the properties of these fluids rather then of different source rocks, as was already suspected by Kurat and Dobosi (2000). Received October 27, 2000; revised version accepted December 29, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号