首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated contributory factors to flood hazard around Scotland. There is a need to develop preliminary assessments of areas potentially vulnerable to flooding for compliance with the European Union Directive on the Assessment and Management of Flood Risks (2007/60/EC). Historical accounts of coastal flood events in Scotland, notably in a storm in January 2005, had shown that estimates of risk based on still water levels required further information to identify sites at which waves and surges could combine. Additionally, it was important to add the effect of future sea-level rise and other drivers from published sources. Analysis of multiple years’ tidal data at seven sites, including estuaries, compared recorded water levels at high-return periods to those derived from a spatially interpolated numerical model contained within a publicly available flood risk map. For gauges with the longest records, increases were seen over time that reflected rises in mean sea level. Exposure to wave energy was computed from prevailing wind strength and direction at 36 stations, related to wave fetch and incident wind direction. Although the highest wave exposure was at open coast locations exposed to the long Atlantic fetch, GIS analysis of coastal rasters identified other areas in or close to estuaries that also had high exposure. Projected sea-level change, when added to the surge and wave analyses, gives a spatially extensive structured variable flood risk assessment for future coastal flood hazard to complement the public flood risk map. Such tools can help fulfil the requirements of the EC Directive and may be a useful approach in other regions with high spatial variability in coastal flood risk related to exposure to waves and wind.  相似文献   

2.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

3.
Coastal flooding is a significant risk on the shores of Languedoc-Roussillon. The storms that periodically hit the coast can generate strong swells and storm surges. Most beach resorts, built on a low elevation dune ridge, are periodically flooded during major storms. Although risks zoning regulations take into consideration coastal flood hazards, the delineation of vulnerable areas is still insufficient and the commonly accepted threshold is regularly exceeded during most severe storms. This paper presents a method to improve the assessment of extreme storm-related water levels. It relies on fieldwork carried out in the Leucate commune (Aude), which is particularly exposed to the risk of sea level rise. It considers both storm surges and wave phenomena that occur within the surf zone (set-up and swash), calculated from the Simulating WAves Nearshore (SWAN®) numerical wave model and the Stockdon formula. Water levels reached during several recent storm events have been reconstructed and simulations of submerged areas were carried out by numerical modelling.  相似文献   

4.
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain‐size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea‐level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea‐level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea‐level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea‐level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.  相似文献   

5.
Products of marine processes occupy a considerable vertical range, which varies along the shore. Extreme waves can both cause erosion and form depositional structures up to several metres above the high tide mark. Temporary supra-elevation of water level by surge or wave set-up shifts effects upward. The preservation potential of products of extreme storms is relatively high, when compared to those associated with more frequent events. The level to which coastal landforms develop depends upon the conditions under which they form; thus sand beach ridges which are related to fairweathcr periods have a restricted height range when compared to gravel beach ridges building up under extreme storms. The varied coastal scenery of eastern Ireland provides many examples of storm-related products (barriers. cliffs, platforms, etc.). They have been related to a latc-Holocene eustatic sea level or even a partly isostatically controlled raised late-Holoccne sea level, but both elevations and apparent tilts can be explained by longshore variations in waves, tides and surges. Such an explanation is more consistent with other studies of latc-Holocene coastal evolution around the Irish Sea basin.  相似文献   

6.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

7.
Pasquier  Ulysse  He  Yi  Hooton  Simon  Goulden  Marisa  Hiscock  Kevin M. 《Natural Hazards》2019,98(3):915-937

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

  相似文献   

8.
The main objective of this writing is to present a practical way to envisage the flood vulnerability in deltaic region, particularly on the concern of sea level rise. Kuching city of Malaysia is established on banks of Sarawak River, 30 km from the sea. Therefore, it is subjected to fluvial and tidal floods. Kuching Bay experiences the highest King Tides in Southeast Asia region. These tide magnitudes could be a glimpse of future sea level rise. By means of modelling these tides, it provides an understanding and preparation for the impacts of sea level rise on the flood mitigation infrastructures and the city itself. The modelling efforts had created an illustration that a 10% rise in tide levels would result in increase of flooding areas up to 6% relative to existing tide levels.  相似文献   

9.

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

  相似文献   

10.
Wind waves and elevated water levels together can cause flooding in low-lying coastal areas, where the water level may be a combination of mean sea level, tides and surges generated by storm events. In areas with a wide continental shelf a travelling external surge may combine with the locally generated surge and waves and there can be significant interaction between the propagation of the tide and surge. Wave height at the coast is controlled largely by water depth. So the effect of tides and surges on waves must also be considered, while waves contribute to the total water level by means of wave setup through radiation stress. These processes are well understood and accurately predicted by models, assuming good bathymetry and wind forcing is available. Other interactions between surges and waves include the processes of surface wind-stress and bottom friction as well as depth and current refraction of waves by surge water levels and currents, and some of the details of these processes are still not well understood. The recent coastal flooding in Myanmar (May 2008) in the Irrawaddy River Delta is an example of the severity of such events, with a surge of over 3 m exacerbated by heavy precipitation. Here, we review the existing capability for combined modelling of tides, surges and waves, their interactions and the development of coupled models.  相似文献   

11.
Coastal towns along the coast of Africa are among the most vulnerable to climate change impacts such as flooding and sea level rise. Yet, because coastal conditions in many parts of the region are poorly understood, knowledge on which population groups are at the most risk is less known, particularly in the Greater Accra Metropolitan Area (GAMA) of Ghana, where the capital city Accra is located. Without adequate information about the risk levels and why, the implementation of locally appropriate adaptation plans may be less effective. This study enriches our understanding of the levels of flood risks along the coast of GAMA and contributes knowledge to improve understanding of place-specific adaptation plans. The study uses data from a 300-household survey, stakeholder meetings, and interviews with local community leaders to construct an integrated vulnerability index. The index includes seven components made up of: dwelling type; house and house environment; household socioeconomic characteristics; experience and perception of flood risk; household and community flood adaptation strategies; house location, and physical characteristics. Our findings show that exposure to floods, particularly from local flash floods is relatively high in all communities. However, significant differences in sensitivity and adaptive capacity of the communities were observed due to differences in location, socioeconomic characteristics, and perception of risks to flooding and sea level rise. The complexity of factors involved in the determination of local-level vulnerability requires that the implementation of adaptation strategies needs to involve cross-sectorial partnerships, involving local communities, in building a comprehensive multi-risk adaptation strategy.  相似文献   

12.
Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from ?5.5 to 2.7 m·a?1 (mean ?0.6 m·a?1). Mean coastal retreat decreased from ?0.6 m·a?1 to ?0.5 m·a?1, for 1952–1970 and 1970–2000, respectively, and increased to ?1.3 m·a?1 in the period 2000–2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.  相似文献   

13.
Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic method is applied to estimate inland flooding due to precipitation. The entire flooded areas with a range of storm intensity (i.e., no storm, 10-, and 50-year storm) and sea-level rise (i.e., current, 10-, and 50-year sea level) are thus determined. The populations in the study region in 10 and 50 years are predicted using an economic-demographic model. With the aid of ArcGIS, detailed analysis of affected population and transportation systems including highway networks, railroads, and bridges is presented for all of the flood scenarios. It is concluded that sea-level rise will lead to a substantial increase in vulnerability of residents and transportation infrastructure to storm floods, and such a flood tends to affect more population in Cape May County but more transportation facilities in Cumberland County, New Jersey.  相似文献   

14.
Using newly digitised sea-level data for the ports of Southampton (1935–2005) and Portsmouth (1961–2005) on the south coast of the UK, this study investigates the relationship between the 100 highest sea-level events recorded at the two cities and the incidence of coastal floods in the adjoining Solent region. The main sources of flood data are the daily newspapers The Southern Daily Echo, based in Southampton and The News, based in Portsmouth, supported by a range of local publications and records. The study indicates a strong relationship between the highest measured sea levels and the incidence of coastal floods and highlights the most vulnerable areas to coastal flooding which include parts of Portsmouth, Southampton, Hayling Island, Fareham and Cowes. The most severe flood in the dataset resulted from the storm surge events of 13–17 December 1989 when eight consecutive extreme high waters occurred. The data suggest that while extreme sea-level events are becoming more common, the occurrence of flood events is not increasing. This is attributed to improved flood remediation measures combined with a reduction of storm intensity since the 1980s. However, several recent events of significance were still recorded, particularly 3 November 2005 when Eaststoke on Hayling Island (near Portsmouth) was flooded due to high sea levels combined with energetic swell waves.  相似文献   

15.
Sea-level rise will increase the area covered by hurricane storm surges in coastal zones. This research assesses how patterns of vulnerability to storm-surge flooding could change in Hampton Roads, Virginia as a result of sea-level rise. Physical exposure to storm-surge flooding is mapped for all categories of hurricane, both for present sea level and for future sea-level rise. The locations of vulnerable sub-populations are determined through an analysis and mapping of socioeconomic characteristics commonly associated with vulnerability to environmental hazards and are compared to the flood-risk exposure zones. Scenarios are also developed that address uncertainties regarding future population growth and distribution. The results show that hurricane storm surge presents a significant hazard to Hampton Roads today, especially to the most vulnerable inhabitants of the region. In addition, future sea-level rise, population growth, and poorly planned development will increase the risk of storm-surge flooding, especially for vulnerable people, thus suggesting that planning should steer development away from low-lying coastal and near-coastal zones.  相似文献   

16.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

17.
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems.  相似文献   

18.
Studies of the Nile Delta coast have indicated wide values of local subsidence, ranging from 0.4 to 5 mm/yr. Trend analysis of sea-level rise and shoreline retreat at two Nile Delta promontories have been studied. Records from tide gauges at Alexandria (1944–1989) and Port Said (1926–1987), north of the Nile delta coast, indicate a submergence of the land and/or a rise of the sea-level of 2 and 2.4 mm/yr, respectively. Dramatic erosion has occurred on some beaches of the Nile Delta. This is greatest at the tips of the Rosetta and Damietta promontories, with shoreline retreat up to 58 m/yr. Relationship between the shoreline retreat and sea level trends in terms of correlation analysis and application of the Bruun Rule indicates that the sea level rise has, by itself, a relatively minor effect on coastal erosion. The sea-level trend at the Nile delta coast is found to be only one of several effects on shoreline retreat. Major recent effects include a combination of cut-off of sediment supply to the coast by damming the River Nile and local hydrodynamic forces of waves and currents. Estimates of local future sea-level rise by the year 2100 at Alexandria and Port Said, respectively, is expected to be 37.9 and 44.2 cm. These expectations, combined with other factors, could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lakes and aquifers.  相似文献   

19.
Urban drainage systems in coastal cities in SE China are characterized by often complex canal and sluicegate systems that are designed to safely drain pluvial flooding whilst preventing tidal inundation.However, the risk of coastal flooding in the region is expected to increase over the next 50-100 years, as urban areas continue to expand and sea-levels are expected to rise. To assess the impact of projected sealevel rise on this type of urban drainage system, a one-dimensional model and decision support tool was developed. The model indicated that although sea-level rise represents a significant challenge, flood probability will continue to be most influenced by rainfall. Events that are significant enough to cause flooding will most likely be minimally impacted by changes to the tidal frame. However, it was found that a sea-level rise of up to 1.2 m by 2010 would result in increased drainage times and higher volumes of over-topping when flooding occurs.  相似文献   

20.
Sea level rise threatens to increase the impacts of future storms and hurricanes on coastal communities. However, many coastal hazard mitigation plans do not consider sea level rise when assessing storm surge risk. Here we apply a GIS-based approach to quantify potential changes in storm surge risk due to sea level rise on Long Island, New York. We demonstrate a method for combining hazard exposure and community vulnerability to spatially characterize risk for both present and future sea level conditions using commonly available national data sets. Our results show that sea level rise will likely increase risk in many coastal areas and will potentially create risk where it was not before. We find that even modest and probable sea level rise (.5 m by 2080) vastly increases the numbers of people (47% increase) and property loss (73% increase) impacted by storm surge. In addition, the resulting maps of hazard exposure and community vulnerability provide a clear and useful example of the visual representation of the spatial distribution of the components of risk that can be helpful for developing targeted hazard mitigation and climate change adaptation strategies. Our results suggest that coastal agencies tasked with managing storm surge risk must consider the effects of sea level rise if they are to ensure safe and sustainable coastal communities in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号