首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

2.
Contemporary accounts of the violent eruption of Vesuvius in 1631 are reviewed, and recorded events are correlated with resulting volcanic deposits. Field study of the deposits in the proximal area revealed the presence of tephra falls, pyroclastic flows and lava, with subordinate surge deposits. A total volume of 1.1 km3 (0.55 km3 DRE) of phono-tephritic to phonolitic magma was ejected during 24 hours.The different magma compositions correspond with a transition from a lower, white, aphyric, highly vesiculated pumice (layer 1) to an upper, gray, crystal-rich, poorly vesiculated pumice (layer 3), showing reverse grading. Isopach and isopleth maps of the tephra-falls have been constructed to determine changes in the eruptive style and temporal evolution of the eruption column which reached a maximum height of 16 to 28 km.The recorded column height variations show a change in the mass discharge rate (8.9 × 106 kg/s to 8.2 × 107 kg/s) and the occurrence of pyroclastic flows during the deposition of the weakly vesiculated, dense pumice of the upper part of layer 3. Pyroclastic flows are crystal-rich and show St. Vincent-type features. The explosive phase demolished the upper part of the pre-existing cone, and debris flows invaded the southern side of the volcano. In the afternoon of December 17, 1631 an outbreak of lava flow from a southern lateral fracture system occurred, and effusion of lava continued up to midnight of December 18. Intermittent steam blasts continued to the end of December, when the eruption ended and Mount Vesuvius entered a solfataric phase. The earthquakes that had marked both the pre-eruptive and eruptive phases, continued, however, well into March 1632.  相似文献   

3.
The Holocene volcanic activity which built up the present terminal cones of Pico de Orizaba and Popocatepetl in eastern Mexico, was characterized by repeated pyroclastic Saint-Vincent type eruptions. Radiocarbon data show that these paroxysmal events occurred at more or less regular intervals, and were followed by moderate activity producing ash and pumice falls and andesitic lava flows from the summit craters.Typical ash and scoria pyroclastic flows exhibit a heterogeneous composition given by the interaction of a dacitic component with a more basic andesitic one. Scoria bombs are characterized by banded to emulsified textures, mineralogical desequilibrium assemblages and linear chemical variations on element-element plots as exemplified by the Loma Grande flow at Pico.Periodic replenishments of the magmatic reservoir could be the major phenomenon that started mixing and consequently triggered the pyroclastic eruptions.  相似文献   

4.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   

5.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

6.
A dacitic lava flow with a volume of about 24 km3 is described. This flow is the largest of three of this type which were erupted in the youngest phase of volcanism in one part of the Andes of northern Chile. The majority of volcanoes erupted during this phase are more andesitic in composition and are made up of small flows and pyroclastic materials.  相似文献   

7.
Collapse mechanism of the Paleogene Sakurae cauldron, SW Japan   总被引:1,自引:0,他引:1  
The Paleogene Sakurae cauldron of SW Japan is characterized by a nested structure with a polygonal outline (21×13 km2) including a circular collapsed part (5 km in diameter). Total thickness of the caldera infill amounts to 2,000 m. The lower member of the infill consists mainly of felsic crystal tuff and lesser intercalated andesitic lava flows, whereas the upper member is composed of high-grade ignimbrite capped with a large rhyolitic lava dome. These members represent the first and second stage eruptions, respectively. Faults bounding the cauldron rim comprise intersecting radial and concentric faults, producing the polygonal outline of this cauldron. The primary collapse of this cauldron thus occurred as a polygonal caldera basin where products of the first stage eruption accumulated. In contrast, the inner collapse part is defined by a ring fracture system. This sector subsided concurrently with accumulation of the high-grade ignimbrite of the second stage eruption. This inner circular collapse thus represents syn-eruptional subsidence concurrent with the climactic eruption. Magma drainage during the first stage probably induced outward-dipping ring fractures in the chamber roof. Opening of the ring fractures following subsidence of the central bell-jar block caused rapid evacuation of magma as voluminous pumice flows, even though magma pressure may have decreased to some degree.  相似文献   

8.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

9.
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km3 of phonolitic pyroclastic material (0.61 km3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 107 and 2.81 × 107 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.  相似文献   

10.
在野外地质资料基础上,利用火山形态学方法,探讨了大兴安岭焰山、高山火山的喷发型式。结果表明,大兴安岭哈拉哈河-绰尔河火山群中的焰山和高山火山不同于斯通博利式喷发形成的火山,其早期爆破喷发的火山碎屑形成火山渣锥、空降火山碎屑席和小型火山碎屑流,晚期溢出大量熔岩。两火山具有较高大的锥体(标高200~300m以上),在结构上,松散火山砾、火山弹等构成下部的降落锥,熔结集块岩构成上部的溅落锥。由火山砾和火山灰组成的空降火山碎屑席分布在火山锥体周围。两火山溢出的熔岩经历了从结壳熔岩→翻花石→渣状熔岩的演变。根据喷发产物可推断焰山和高山火山具有以下喷发特征:爆破喷发形成持续的喷发柱→斯通博利式喷发→熔岩喷泉喷溢,其中以持续时间较长的喷发柱区别于典型的斯通博利式喷发。类似焰山、高山火山的喷发特征,在龙岗第四纪火山群、镜泊湖全新世火山群中也都有个例,这是中国大陆火山作用中一种新的喷发型式。  相似文献   

11.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

12.
Jun-Ichi  Kimura  Mamiko  Tateno  Isaku  Osaka 《Island Arc》2005,14(2):115-136
Abstract   The geology and geochemistry of pyroclastic flows and fallout tephras formed during the Karasugasen dome eruption in the Daisen–Hiruzen Volcano Group in southwest Japan have been examined in detail. The Karasugasen lava dome erupted at about 26 ka. The eruption began with a vulcanian ash fall, and this was followed by at least eight block and ash flows and a pumice flow. The block and ash flows were produced by the successive collapses of a growing lava dome. This main eruption phase was followed by an eruption of vulcanian ash falls, and finally ended with a sub-Plinian pumice fall. This eruption sequence is typical of the Daisen Volcano during the last three eruption events, which occurred at 58, 26 and 17 ka. The magma produced during the Karasugasen eruption was a typical adakite, with extremely high Sr/Y ratios and low HREE/LREE ratios compared to normal arc lavas. The chemistry of the Karasugasen lavas is almost identical to other Daisen–Hiruzen lavas that were produced from eruptions over an interval of a million years. The continuous supply of a huge amount of adakitic magma (>100 km3) for such a long period suggests a massive homogeneous source material, such as molten Philippine Sea Plate slab. Slab melting is a plausible mechanism for the production of the adakitic lavas at Karasugasen, and hence the Daisen–Hiruzen Volcano Group.  相似文献   

13.
Flow direction patterns have been determined by imbrication measurements of pumice and lithic fragments of the Handa pyroclastic flow deposit, in order to estimate the source vent location and to analyze the flow behavior. The pyroclastic flow deposit studied is dacitic in composition, 2 km2 in volume, and >32,300 Y.B.P. in age. Flow directions from 52 outcrops indicate a source vent located within the area of recent lava domes of Kuju Volcano. The distribution of the pyroclastic flow deposit and the flow direction patterns determined by imbrication suggest that the pyroclastic flow accurately followed the topographic relief at the time of eruption. The presence of imbrication indicates the change of flow-regime from turbulent condition to laminar condition according to the distance from the source vent. Imbrication is visible within the lower-half reaches of the pyroclastic flow distribution, where the pyroclastic flow had developed the laminar flow characteristics of a dense gravity current.  相似文献   

14.
The history of volcan Popocatepetl can be divided into two main periods: the formation of a large primitive volcano — approximatively 30 km wide — on which is superimposed a modern cone (6–8 km in diameter and 1700m high). A major event of Bezymianny type marks the transition between these two dissimilar periods.The activity of the primitive volcano was essentially effusive and lasted several hundred thousands of years. The total volume of products ejected by the volcano is of the order of 500–600 km3. Its last differentiated magmas are dacitic.A gigantic debris flow (D.F.) spread on the southern side is related to the Bezymianny-type event which destroyed the summit area of the ancient edifice. An elliptical caldera ( 6.5 × 11 km wide) was formed by the landslide. Its deposits, with a typical hummocky surface, cover 300 km2 for a volume of 28–30 km3. Numerous outcrops belonging to this debris flow show “slabs” of more or less fractured and dislocated rocks that come from the primitive volcano. These deposits are compared to two studied debris flows of similar extent and volume: the Mount Shasta and Colima's D.F.This eruption takes a major place in the volcanologic and magmatic history of Popocatepetl: pyroclastic products of surge-type with “laminites” and crude layers, ashflows, and pumiceous airfall layers are directly related to this event and begin the history of the modern volcano probably less than 50,000 years ago. In addition, a second andesitic and dacitic phase rose both from the central vent — forming the basis of modern Popo — and from lateral vents.The terminal cone is characterized by long periods of construction by lava flows alternating with phases of destruction, the duration of these episodes being 1000 to 2000 years. The cone is composed of two edifices: the first, volcan El Fraile, began with effusive activity and was partly destroyed by three periods of intense explosive activity. The first period occurred prior to 10.000 years B.P., the second from 10.000 to 8000 years B.P. and the third from 5000 to 3800 years B.P. Each period of destruction shows cycles producing collapsing pyroclastic flows or nuées of the St Vincent-type related to the opening of large craters, plinian air-fall deposits and minor lava flows. The second edifice, the summit Popo, produced lava flows until 1200 years B.P. and since that time, entered into an explosive period. Two cataclysmic episodes, each including major pyroclastic eruptions, occurred 1200 and 900–1000 years ago. During the Pre-Hispanic and historic times effusive activity was restricted entirely to the summit area alternating with plinian eruptions. Nevertheless, despite the quiet appearance of the volcano, the last period of pyroclastic activity which started 1200 years ago may not have ended and can be very dangerous for the nearby populations.  相似文献   

15.
Rabaul Caldera is the most recently active (1937–1943) of four adjoining volcanic centres aligned north-south through the northern extremity of eastern New Britain. Geological mapping after the 1983–1985 Rabaul seismic and deformation crisis has partially revealed a long and complex eruption history dominated by numerous explosive eruptions, the largest accompanied by caldera collapse. The oldest exposed eruptives are the basaltic pre-caldera cone Tovanumbatir Lavas K/Ar dated at 0.5 Ma. The dacitic Rabaul Quarry Lavas exposed in the caldera wall and K/Ar dated at 0.19 Ma, are overlain by a sequence of dacitic and andesitic pyroclastic flow and fall deposits. Uplifted coral reef limestones, interbedded within the pyroclastic sequence on the northeast coast, suggest that explosive eruptions in the Rabaul area had commenced prior to the 0.125 Ma last interglacial high sea level stand. The pyroclastic sequence includes the large Boroi Ignimbrites and Malaguna Pyroclastics both 40Ar/39Ar dated at about 0.1 Ma, and the Barge Tunnel Ignimbrite 40Ar/39Ar dated at around 0.04 Ma. Few reliable ages exist for the many younger eruptives. These include Holocene ignimbrites of the latest caldera-forming eruptions—the Raluan Pyroclastics variously dated (14C) at either about 3500 or 7000 yr B.P., and the ca. 1400 yr B.P. Rabaul Pyroclastics. At least eight intracaldera eruptions have occurred since the 1400 yr B.P. collapse, building small pyroclastic and lava cones within the caldera.A major erosional episode is evident as a widespread unconformity in the upper pyroclastic stratigraphy at Rabaul. Lacking relevant radiometric ages, this episode is assumed to have occurred during last glaciation low sea levels and is here arbitarily dated at ca. ?20 ka. At least five, possibly nine, significant ignimbrite eruptions have occurred at Rabaul during the last ?20 ka. The new eruptive history differs considerably from that previously published, which considered ignimbrite eruption and caldera collapse to have first occurred at 3500 yr B.P.Rabaul volcanism has been dominated by two main types: (a) basaltic and basaltic andesite cone building eruptions; and (b) dacitic, and rarely andesitic or rhyolitic, plinian/ignimbrite eruptions of both high- and low-aspect ratio types. The 1400 yr B.P. Rabaul Ignimbrite is a type example of a low-aspect ratio, high-energy, and potentially very damaging eruption. Fine vitric ash deposits, common in the Rabaul pyroclastic sequence, demonstrate the frequent modification of eruptions by external water probably related to early caldera lakes or bays. Interbedding of these fine ashes with plinian pumice lapilli beds suggests that many early eruptions occurred from multiple vents, located in both wet and dry areas.  相似文献   

16.
One active and ten extinct Quaternary volcanoes are described from the Cape Hoskins area, on the north coast of New Britain. They are mostly strato volcanoes built up of lava flows, lava domes, pyroclastic flows, lahars, tephra, and derived alluvial sediments. The volcanic products range in composition from basalt to rhyolite, but basaltic andesite and andesite predominate. Much of the area is covered by tephra, several metres thick, consisting mainly of rhyolitic pumice. The active volcano, Pago, is built up of several glacier-like lava flows, the last of which was formed during an eruption in 1914–18. Pago lies within a well-preserved caldera forming the central part of a broad low-angle cone, named Witori, which consists largely of welded and unwelded pyroclastic flow deposits. C-14 dates obtained on charcoal indicate that the caldera eruption occurred about 2500 years B. P. Another caldera of similar age lies south of Witori. Of the other eight volcanoes described four are relatively well-preserved steep-sided cones formed mainly of lava flows, one is a remnant of a low-angle cone with a caldera, and three are deeply eroded cones which have none of their constructional surfaces preserved.  相似文献   

17.
The Nevado de Toluca, in the middle of the Mexican volcanic belt, has been built by two very dissimilar phases. The first one that lasted more than one million years is mainly andesitic. Numerous massive and autobrecciated lava flows of this phase pass outwards into thick conglomeratic formations. The volume of this primitive volcano represents the essential part of the Nevado. After an intense periode of erosion, the second phase is of very short duration (about 100.000 years) and is dacitic in nature. Three main episode can be distinguished:
  1. Eruption of important ash and pumice pyroclastic flows related to caldera collapse above a shallow magmatic reservoir.
  2. Extrusions of several dacitic domes within and outside the caldera with numerous associated «nuées ardentes» surrounding the volcano.
  3. Plinian eruption leading to widespread pumiceous air-fall and to the opening of the present crater inside the caldera. Extrusion of a new small dacitic dome and late phreatic explosions.
This second sequence of events can be interpreted as the progressive emptying of the crustal magmatic chamber without refilling by a new magma supply. The most recent activity in the area is represented by monogenic cones and flows of basic andesites outside the central vent system of the Nevado.  相似文献   

18.
Volcan Pico de Orizaba, which marks the eastern end of the Trans-Mexican Volcanic Belt, is one of the largest andesitic composite volcanoes in America. It is located above a series of crustal distensive faults making the boundary of the Coast Plains of the Gulf of Mexico from theAltiplano. For this reason, the volcano shows an asymmetry: from the west, its elevation is about 3,000 m whereas on the eastern side it reaches 4,000 to 4,500 m from its base. The Pico de Orizaba is composed of a primitive stratovolcano raised by a recent summit cone. It has been built by three very distinct volcanic and magmatic phases.
  1. The first one, probably discontinuous effusive activity, lasted more than one million years. It is mainly composed of two pyroxenes-andesites with scarce associated basaltic and dacitic lava-flows. Amphibole is an accessory mineral in most differentiated lavas. On the eastern flank, numerous massive and autobrecciated lava-flows pass outward into thick conglomeratic formations. This effusive phase has built a primitive central volcano and a parasitic cone: the Sierra Negra.
  2. The second phase is of short duration — about 100,000 years or less — in comparison with the first period. It seems that this period began with the formation of a caldera followed by the extrusion of amphibole dacite domes and the overflow of viscous silica-rich (andesite to dacite) lava flows on the northern flank. An intense explosive activity develops:pelean nuées ardentes are associated with extrusion of the domes; numerous plinian eruptions leading to widespread dacitic pumiceous air-falls are produced by both the central and the adventive volcanoes. This sequence of events is interpreted as the progressive emptying of a superficial chamber containing differenciated magma. A rhyolite flow erupted during this phase.
  3. The age of the recent phase is better defined. It started 13,000 years B.P. with the eruption of a dacitic ash-flow containing pumice and scoria-bombs. This was such an intense event that products were found 30 km S.E. of the summit, erasing the top of the former volcano and creating a large crater (4–5 km wide). The present cone, of 1,400–1,500 m elevation, grew in this crater. During a period of 7,000 to 8,000 years, the new stratovolcano experienced various important pyroclastic eruptions with a cycle of the order of 1,000 to 1,500 years. The pyroclastic flows (ash, pumice, and bombs) associated with air-fall deposits are of Saint-Vincent type. They present an heterogeneous dacitic and andesitic magma. The dacitic component is similar to previous differenciated materials. On the other hand, the andesitic magma appears somewhat similar to lava-flows from morphologically young cones erupted outside the central vent system. This eruptive cycle can be interpreted as the result of reoccurring injections of deep basic magma within the crustal chamber. For the last 5,000 years the activity of the modern Pico de Orizaba has again been essentially effusive (andesites) with periodic plinian eruptions.
  相似文献   

19.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

20.
The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号