首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monte Carlo simulation of wave spectra was carried out to provide an assessment of JONSWAP spectral model and parameters. The simulation method is found to be satisfactory because (a) it excludes the spectral variability due to geophysical factors from the sampling errors in the spectral estimates and the statistical uncertainty in determining the model parameters; and (b) the simulated spectra can represent ideal spectral estimates where the sampling errors have been minimized by increasing the degrees of freedom of the spectra. The latter (b) allows both the magnitude of sampling errors to be evaluated and errors due to statistical uncertainty to be isolated. Thus, the stimulation study provides a useful error analysis to assess the JONSWAP spectral model and parameters. For instance, it is found from the results that the sampling errors could be as high as 20% while errors due to uncertainty in determining the model parameter could be as high as 17%. However, the overall errors may be reduced to the minimum of approx. 15% if the simulated spectra have 80 degrees of freedom and constant values of σa and σb i.e. σa = 0.07 and σb = 0.09. This implies that the maximum accuracy of 85% may be achieved in JONSWAP spectral model even though the α parameter has been underestimated by about 1.5%. The overestimated values of γ might come from the underestimated α and the biased φm estimator caused by the statistical uncertainty in the presence of a sharp spectral peak. Although the scale parameters (α and φm) exhibit smaller errors and variability than the shape parameters (ψ, σa and σb), they are more sensitive to the degrees of freedom of the spectra and their estimators are not better than the estimators of shape parameters. The simulation experiments have also shown that simulated spectra at 20–40 degrees of freedom contain a substantial amount of sampling errors. Therefore, the measured wave spectra at the same degrees of freedom (20–40) are not suitable and should not be used for evaluating the accuracy of any wave spectral model.  相似文献   

2.
Two models, a spectral refraction model (Longuet-Higgins) and a parabolic equation method (PEM) refraction-diffraction model (Kirby), are used to simulate the propagation of surface gravity waves across the Southern California Bight. The Bight contains numerous offshore islands and shoals and is significantly larger (≈ 300 km by 300 km) than regions typically studied with these models. The effects of complex bathymetry on the transformation of incident wave directional spectra, S0(f,θ0), which are very narrow in both frequency and direction are difficult to model accurately. As S0(f,θ0) becomes broader in both dimensions, agreement between the models improves and the spectra predicted at coastal sites become less sensitive to errors in the bathymetry grid, to tidal changes in the mean water depth, and to uncertainty in S0(f,θ0) itself. The smoothing associated with even relatively narrow (0.01 Hz-5° bandwidth) S0(f,θ0) is usually sufficient to bring the model predictions of shallow water energy into at least qualitative agreement. However, neither model is accurate at highly sheltered sites. The importance of diffraction degrades the predictions of the refraction model, and a positive bias [O (10%) of the deep ocean energy] in the refraction-diffraction model estimates, believed to stem from numerical “noise” (Kirby), may be comparable to the low wave energy. The best agreement between the predicted spectra generally occurs at moderately exposed locations in deeper waters within the Bight, away from shallow water diffractive effects and in the far-field of the islands. In these cases, the differences between the models are small, comparable to the errors caused by tidal fluctuations in water depth as waves propagate across the Bight. The accuracy of predicted energies at these sites is likely to be limited by the uncertainty in specifying S0(f,θ0).  相似文献   

3.
The main idea of this paper is to identify functional relations between seakeeping characteristics and hull form parameters of Mediterranean fishing vessels. Multiple regression analysis is used for quantitative assessment through a computer software that is based on the SQL Server Database. The seakeeping attributes under investigation are the transfer functions of heave and pitch motions and of absolute vertical acceleration at stern, while the ship parameters influencing motion dynamics have been classified into two groups: displacement (Δ) and main dimensions (LBT), coefficients that define the details of the hull form (CWP, CVP, LCB, LCF, etc.).Four multiple regression models having different parameter combinations are here investigated and discussed, giving way to the so-called ‘Simple Model’, ‘Intermediate Model’, ‘Enhanced 1 Model’ and ‘Enhanced 2 Model’. The obtained results are more than satisfactory for seakeeping predictions during the conceptual design stage.  相似文献   

4.
Microstructure measurements in natural waters: Methodology and applications   总被引:2,自引:0,他引:2  
Modern approaches to microstructure data processing, including wavelet denoising, are discussed. The wavelet procedure is applied to small-scale shear signals before estimating the dissipation rate ε and to the temperature/density profiles used to calculate Thorpe scales. Microstructure data obtained on the Mediterranean shelf of Catalonia are used to illustrate various approaches to the Thorpe displacement calculations. It is suggested that the Weibull probability function is an appropriate model for the Thorpe scale distribution. Microstructure measurements from the upper layer of the Boadella reservoir (Catalonia, Spain) support this finding.A new analytical approximation for the 1D Panchev–Kesich spectrum is deduced and the results of ε computation are compared with spectral fitting by the widely used Nasmyth spectrum. Applying the Kraichnan spectral model to compute ε from temperature spectra in the convective-viscous sub-range is examined as an alternative to the Batchelor spectrum. Microstructure measurements taken in Lake Banyoles (Catalonia, Spain) and in the North Atlantic were used for spectral calculations.Statistical analysis of eddy Kb and thermal Kθ diffusivities measured on a shallow shelf of the Black Sea shows the importance of process-orientated domain averaging of the diffusivities in obtaining good correspondence between Kb and Kθ in active turbulent regions. In weakly turbulent, stratified interior layers, the averaged Kb and Kθ differ significantly, which may point to the inapplicability of isotropic formulae used for ε and temperature dissipation χθ estimates, as well as to a dependence of the mixing efficiency γ on the Richardson number or in some cases on regions of fossil turbulence.  相似文献   

5.
The annual subduction rate of the North Pacific was calculated based on isopycnally averaged hydrographic climatology (HydroBase), high-resolution winter mixed-layer climatology (NWMLC), and various wind stress climatologies from ship reports, numerical weather prediction products, and satellite products. The calculation was performed using Lagrangian coordinates in the same manner as in previous works, except a less smoothed oceanic climatology (HydroBase and NWMLC) was used instead of a World Ocean Atlas. Differences in the wind stress climatologies have very little effect on subduction rate estimates. The subduction rate census for density classes showed peaks corresponding to subtropical mode water (STMW), central mode water (CMW), and eastern subtropical mode water (ESTMW). The deeper mixed layer and the associated sharper mixed-layer fronts in the present climatology resulted in a larger lateral induction, which boosted the subduction rate, especially for the potential density anomaly (σθ) range of the lighter STMW (25.0 < σθ < 25.2 kg m−3) and lighter CMW (26.0 < σθ < 26.2 kg m−3), compared to previous estimates. The renewal time of permanent pycnocline water was estimated as the volume of water divided by the subduction rate for each σθ class: 2–4 years for ESTMW (24.5 < σθ < 25.2 kg m−3), 2 years for the lighter STMW (25.0 < σθ < 25.3 kg m−3), 5–9 years for the denser STMW (25.3 < σθ < 25.6 kg m−3), 10–20 years for the lighter CMW (26.0 < σθ < 26.2 kg m−3), 20–30 years for the middle CMW (26.2 < σθ < 26.3 kg m−3), and 60 years or longer for the denser CMW (26.3 < σθ < 26.6 kg m−3). A comparison of the water volume and subduction rate in potential temperature–salinity (θS) space indicated that the upper permanent pycnocline water (25.0 < σθ < 26.2 kg m−3) was directly maintained by nondiffusive subduction of winter surface water, including STMW and lighter CMW. The lower permanent pycnocline water (26.2 < σθ < 26.6 kg m−3) may be maintained through the subduction of fresher and colder water from the subarctic–subtropical transition region and subsequent mixing with saltier and warmer water. Diagnosis of the potential vorticity (PV) of the subducted water demonstrated that the low PV of STMW was mainly due to the large subduction rate, whereas that of both ESTMW and CMW was due mainly to the small density advection rate (cross-isopycnal flow). Additionally, a relatively large subduction rate probably contributes to the low PV of part of the lighter CMW (ESTMW) formed in the region around 38°N and 170°W (28°N and 145°W), which is characterized by a relatively thick winter mixed layer and an associated mixed-layer front, causing a large lateral induction rate.  相似文献   

6.
High-quality hydrographic sections occupied during the World Ocean Circulation Experiment (WOCE) have allowed the first estimates to be made of property changes in the deep ocean on a decadal time-scale. The magnitude of the property variability on deep isothermal surfaces (below about 2–3°C) was found to be comparable with the magnitude of possible systematic errors in the data (except for a few regions where formation of deep and bottom waters occurs). However, the problem of systematic errors in hydrographic data was only marginally addressed in the literature.We conducted an analysis of property offsets between the cruises of an expansive global hydrographic dataset, including 1314 cruises. Because of significant differences in quality, a distinction is made between the high-quality modern data (1970–1998) and less accurate historical data (since 1920s). Inter-cruise offsets are determined on isothermal surfaces for salinity, oxygen, silicate, nitrate and phosphate within crossover areas. Offsets are decomposed into a systematic part (the difference of respective systematic errors (biases)) and a non-systematic part (a combined effect of temporal and spatial variability). For the reference subset of N=384 high-quality cruises with M=2201 crossover areas (for salinity) a system of M algebraic equations in N unknown cruise biases is obtained and solved by least squares.Accounting for biases allows a drastic reduction of inter-cruise offsets (a factor of 2–4 depending on property and dataset considered), bringing data from different cruises to agreement within WOCE quality requirements. For a composite WOCE/non-WOCE high-quality dataset calculated root-mean-square inter-cruise offsets before and after adjustment (in parentheses) are 3.2*10−3 (1.34*10−3) for salinity, 2.498 (0.782) μmol/kg for oxygen, 2.4 (0.95) μmol/kg for silicate, 0.55 (0.26) μmol/kg for nitrate and 0.045 (0.018) μmol/kg for phosphate. Our results demonstrate, that quality requirements for the WOCE Hydrographic Programme have been obviously fulfilled.Biases for historical cruises are calculated relative to the corrected reference data and are found to be on average a factor of 3–6 larger than the modern cruise biases. Calculated property offsets and biases for both high-quality and historical data are found to be in a good agreement with independent offset estimates. Though small differences of IAPSO Standard Seawater salinity from label salinity are reported in the literature, they can not explain observed inter-cruise offsets, and operator/salinometer related errors seem to be the main cause for inter-cruise differences.Systematic biases can provide an explanation for apparent changes in deep water temperature–parameter relationships as an alternative to natural variability. For instance, we argue that apparent variability of the deep water salinity in the Argentine Basin during 1980s as reported by Coles, McCartney, and Olson (J. Geophys. Res. 101, 1996, 8957–8970) is mostly the result of systematic errors in the data used for their analysis. Removing inconsistencies in a composite data set is also important for producing consistent climatological property fields even in the data abundant regions.  相似文献   

7.
The prediction of ship stability during the early stages of the design process is very important from the point of a vessel's safety. Hence, in this study, a formula is presented to estimate cross curves of fishing vessels to predict initial stability at the preliminary design stage. For this purpose, 175 fishing vessel forms have been generated from Doust trawler hull series. The predictive technique is established by regression analysis of systematically varied fishing vessel series data. The mathematical model is constructed as a function of main design parameters such as length to beam ratio LWL/BWL, beam to draft ratio BWL/T, moulded depth to draft ratio D/T and block coefficient CB. This prediction is also used to determine the effect of specific hull form parameters and load conditions on the stability of the fishing vessel. Some basic considerations on how the proposed method can be applied to a new fishing vessel are presented.  相似文献   

8.
The salinity minimum frequently occurring in the Mixed Water Region between the Oyashio and Kuroshio Fronts seems to originate from the salinity minimum at the density of 26.8σθ called the North Pacific Intermediate Water. We examined water exchange of this region with the Oyashio and the Kuroshio Extension using mixing ratio RK defined as (θ - θOY)/(θK - θOY) × 100, where θOY, θK, and θ represent potential temperature of the Oyashio and Kuroshio Waters and their mixture on the isopycnal surfaces, respectively. CTD data were obtained by repeated observation from January 1990 to May 1991. RK increases southward from the Oyashio Front to the Kuroshio Front with the range of −20 to 120%. The gradient of RK on the isopycnal surfaces is large around the Oyashio Front above the 26.8σθ surface, while it is large around the Kuroshio Front below it. This agrees with the average RK in the Mixed Water Region decreasing greatly with the increase of density at densities less dense than 26.8σθ. We calculated thickness and volume transport of the Oyashio between the isopycnal surfaces near the coast of Hokkaido. They increase largely with density at densities less dense than 26.8σθ. It is supposed that the salinity minimum in the Mixed Water Region is the upper limit of the water largely influenced by the Oyashio Water. Its density could depend only on the density structure of the Oyashio.  相似文献   

9.
The C/N and stable C and N isotope ratios (δ13C, δ15N) of sedimentary and suspended particulate matter were determined in the Schelde Estuary. Suspended matter was divided into 2 to 5 size fractions by centrifugation. Four major pools of organic matter were recognized: riverine, estuarine, marine and terrestrial materials. Terrestrial organic matter (δ13C≈−26‰, δ15N≈3.5‰, C/N≈21) is important for the sedimentary pool, but suspended matter is dominated by the marine (δ13C≈−18‰, δ15N≈9‰, C/N≈8), riverine (δ13C≈−30‰, δ15N≈9‰, C/N≈7.5) and estuarine (δ13C≈−29‰, δ15N≈15‰, C/N≈8) end-members. In the upper estuary, the suspended matter size fractions vary systematically in their carbon and nitrogen biogeochemistry, with the small particles having low C/N ratios, depleted δ13C and enriched δ15N values relative to large particles. Moreover, sedimentary and suspended matter differ significantly in terms of C/N ratios (17 vs. 8.9), δ13C (−26.3 vs. −28.9‰) and δ15N (+6.9 vs. 12.0‰). In the lower estuary, suspended matter fractions are similar and sedimentary and suspended organic matter differ only in terms of δ13C (−23.5 vs. −20.1‰). Our data indicate that autochthonous organic matter contributes significantly to the total suspended matter and that the suspended organic matter composition cannot be explained in terms of conservative mixing of riverine and terrestrial sources on the one hand and marine sources on the other hand.  相似文献   

10.
The spectral characteristics of shallow water waves with significant wave height more than 2 m based on the data collected along the Indian coast is examined. It was found that the value of Joint North Sea Wave Project (JONSWAP) parameters (α and γ) increases with significant wave height and mean wave period and decreases with spectral peak period. The estimated average value (0.0027 and 1.63) of the JONSWAP parameters, α and γ were less than the generally recommended values of 0.0081 and 3.3, respectively. By carrying out a multi-regression analysis, an empirical equation is arrived relating the JONSWAP parameters with significant wave height, peak wave period and mean wave period. It was found that the Scott spectra underestimate the maximum spectral energy of high waves. The study shows that the measured wave spectra can be represented by JONSWAP spectra with the JONSWAP parameters estimated based on the equation proposed in this paper.  相似文献   

11.
The interactions of Fe(II) and Fe(III) with the inorganic anions of natural waters have been examined using the specific interaction and ion pairing models. The specific interaction model as formulated by Pitzer is used to examine the interactions of the major components (Na+, Mg2+, Ca2+, K+, Sr2+, Cl, SO4, HCO3, Br, CO32−, B(OH)4, B(OH)3 and CO2) of seawater and the ion pairing model is used to account for the strong interaction of Fe(II) and Fe(III) with major and minor ligands (Cl, SO42−, OH, HCO3, CO32− and HS) in the waters. The model can be used to estimate the activity and speciation of iron in natural waters as a function of composition (major sea salts) and ionic strength (0 to 3 M). The measured stability constants (KFeX*) of Fe(II) and Fe(III) have been used to estimate the thermodynamic constants (KFeX) and the activity coefficient of iron complexes (γFeX) with a number of inorganic ligands in NaClO4 medium at various ionic strengths: In(KFeXFeγX) = InKFeX − In(γFeX) The activity coefficients for free ions (γFe, γx) needed for this extrapolation have been estimated from the Pitzer equations. The activity coefficients of the ion pairs have been used to determine Pitzer parameters (BFeX, BFeX0, CFeXφ) for the iron complexes. These results make it possible to estimate the stability constants for the formation of Fe(II) and Fe(III) complexes over a wide range of ionic strengths and in different media. The model has been used to determine the solubility of Fe(III) in seawater as a function of pH. The results are in good agreement with the measurements of Byrne and Kester and Kuma et al. When the formation of Fe organic complexes is considered, the solubility of Fe(III) in seawater is increased by about 25%.  相似文献   

12.
Ship hull drag reduction using bottom air injection   总被引:1,自引:0,他引:1  
The idea of bottom air injection to reduce ship hull resistance is not new. Early patents envisioned planing hull applications. Recent planing hull tests speed realized an increase of 7–12 knots. River barges and ship fitted with an air injection system results are presented to show a 10–15% reduction in the frictional resistance. Graphs for making initial estimates for displacement hulls with bottom air injection are presented. It is clear from these results that improvements in high speed planing catamarans and full form hull resistance can be realized by using bottom air injection.  相似文献   

13.
Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton (α*), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (60°N), PAP (50°N) and ESTOC (30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α* – as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403–1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α* from 1 to 61 wavebands and study the results in conjunction with the three different α*estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α*. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands if α* is a function of wavelength and chlorophyll, and three wavebands if α* is a fixed value.  相似文献   

14.
A simple kε turbulence closure is introduced which has no stability functions but instead a Richardson number-dependent turbulent Prandtl number. Its free parameters are determined in a comparison with microstructure observations from a stratified and sheared tidal estuary and laboratory measurements. The closure is able to simulate observed turbulent dissipation rates (ε) and turbulent length scales (lth) in regions of strong mean shear and small gradient Richardson number (Rg) to within factors of 2–3. It fails in regions of small shear and large Rg, presumably because of the dominance of internal wave-driven mixing. Additional simulations with a kε closure with stability functions taken from Canuto et al. [Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413–1426] and with the closure of Baumert and Peters [Baumert, H., Peters, H., 2004. Turbulence closure, steady state, and collapse into waves. J. Phys. Oceanogr. 34, 505–512] show poor performance. Establishing a valid 1:1 comparison of simulated and observed ε and lth requires nudging the model velocity and density toward observed values because free model integrations quickly diverge from the observations. Steady state gradient Richardson numbers are constrained to a range of 0.18–0.25, while flux Richardson numbers are constrained to the range of 0.1–0.22. The closure output is rather insensitive to such parameter variations. The simulations are sensitive, however, to the treatment of the observed velocity and density used to nudge the model. Good closure performance requires averaging the measured tidal flow over about an hour, a time scale for which conventional numerical models of estuarine circulations should be able to match observed shears. In the closure simulations the TKE balance stays close to a production–dissipation balance. The time rate of change and vertical diffusion of TKE are small, of the same order of magnitude, and vary in magnitude relative to each other systematically across the water column.  相似文献   

15.
We examined stable carbon and nitrogen isotopic signatures of 17 fish and 16 invertebrate taxa common to the Newfoundland and Labrador (NL) continental shelf food web. Particular sampling emphasis was placed on Atlantic cod (Gadus morhua) and related prey species (e.g. shrimp, Pandalus borealis, and capelin, Mallotus villosus). We found highly significant (p < 0.0001) differences between near-shore (bays) and offshore (shelf edge) δ15N signatures for cod, ‘other fish’ (pooled) and invertebrates (pooled). In contrast, there were only minor differences in δ13C signatures of ‘other fish’ (p < 0.05) and no difference for cod and invertebrates among the two habitats. We sampled at two times of the year (January and June) and found no systematic effect of season on both δ13C and δ15N in cod, ‘other fish’ and invertebrates. We calculated isotopic fractionation factors for cod from the entire shelf (mixed diet) and for cod with diets composed mainly of capelin or shrimp. These values ranged between 2.2‰ and 3.9‰ for δ15N and −0.4‰ and 0.8‰ for δ13C and, for δ15N, may reflect diet-related differences in bioenergetic status. We discuss potential mechanisms for near-shore versus offshore enrichment of δ15N signatures, and demonstrate the implications of this spatial variation on δ15N-derived trophic position estimates.  相似文献   

16.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

17.
Extensive artificial waterways have replaced natural wetlands and created new estuarine habitats on the southern Queensland coast, Australia. Economically important fish species found in adjacent natural wetlands of mangrove, saltmarsh and seagrass also occur in the artificial waterways. Stable isotope analyses (δ13C, δ15N) were used to test whether the relative importance of basal sources of energy varied for foodwebs found in artificial (canals and tidal lakes) and natural waterways. None of the fish species differed in their isotope values between artificial waterways. In contrast, isotopic signatures of snub-nosed garfish (Arrhamphus sclerolepis; Hemiramphidae) varied greatly between natural and artificial waterways, having highly enriched δ13C values (−10.5‰) in natural wetlands, demonstrating reliance on seagrass (−11.4‰), and significantly less enriched values (−19.0‰) in artificial waterways, consistent with either local algal sources (−19.8 to −20.4‰) or a mixture of seagrass and other less enriched autotrophs from adjacent natural wetlands. Isotopic signatures of sand whiting (Sillago ciliata; Sillaginidae) were also significantly more enriched in natural (−18.2‰) than artificial (−21.0‰) habitats, but means were not far enough apart to distinguish between different sources of nutrition. δ13C values of yellowfin bream (Acanthopagrus australis; Sparidae) did not differ between artificial and natural habitats (about −20‰ in both). δ15N values of fish varied among habitats only for A. sclerolepis, which in artificial waterways had values enriched by 2‰ over those in natural waterways. This was consistent with a shift from seagrass (relatively depleted δ15N) as a source in natural habitat to algal sources (relatively enriched δ15N) in artificial habitats. This study provides some of the first evidence that at least some fish species rely on different autotrophs in artificial waterways than in adjacent natural wetlands.  相似文献   

18.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

19.
For study purposes, a simplified model of a hydrofoil craft is constructed with the assumption that it has:
• heave only motion;
• no surface proximity effect on the foil;
• no foil broaching.
It is then shown that a fully submerged hydrofoil, mounted at the bottom of rigid struts, can transmit large vertical force fluctuations to the hull, even in an idealized sinusoidal seaway because of the orbital velocity field in the water. But if the foil support struts are hinged, inclined aft and resiliently supported, so that the hydrofoil can swing about the strut's pivot in response to the changes in local water velocity, then the vertical accelerations transmitted to the hull are reduced. The more the strut is inclined to the vertical, the smaller are the accelerations transmitted to the hull. A hinged strut whose equilibrium angle (for 1 g) is 60° to the vertical can reduce the vertical accelerations by an order of magnitude. It also has two other practical advantages. The strut(s) and foil will ride up towards horizontal during the rare but inevitable impacts with large marine objects (such as whales or flotsam) and during groundings. And when they encounter a region of water moving rapidly downward (which can cause a conventional fully submerged hydrofoil to experience a violent hull impact on the water) they move in such a way as to maintain a roughly constant lift force on the hull, so that there is negligible hull motion in heave.  相似文献   

20.
Western boundary currents flow poleward from low latitudes until they ultimately separate from the coast and turn eastward into the ocean interior. The separation is mainly due to either: (i) the variation of the Coriolis parameter with latitude (β) which causes vanishing of the near-wall depth; (ii) vanishing wind stress curl over the ocean interior which forces zero meridional transport; or (iii) opposing currents that flow toward the equator and force the northward flowing currents to turn offshore (Agra and Nof, Deep Sea Research I, 40, 2259–2282). Here, we focus on the third kind of separated currents and show that, due to β, such separated currents migrate along the wall. A nonlinear “reduced gravity” one-and-a-half layer model is used to compute the desired migration speed. Solutions of the primitive equations are constructed analytically assuming that the translation rate is steady. It is found that the migration rate along the wall is given by βRd2 cosα/2 sinγ, where Rd is the Rossby radius, α an angle that measures the inclination of the joint offshore currents relative to the north, and γ is the angle between the axis of the joint offshore currents and the wall. The migration meridional component can be either northward or southward (depending on the inclination of the wall) but the zonal component is always westward. When the separated joint offshore flow is in the east-west direction (i.e. α = π/2 or 3π/2 so that the separated flow is zonal) no migration is taking place. It turns out that the above migration formula is so robust that it is also describes the migration rate in a two-and-a-half layer model where one current is allowed to, at least partially, dive under the other. For most separated currents the computed migration rate is a few centimeters per second.Possible application of this theory to the Confluence zone in the South Atlantic (where significant seasonal movement of the separation latitude has been observed) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号