首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《地学前缘(英文版)》2018,9(6):1871-1882
A combined cluster and regression analysis were performed for the first time to identify rainfall threshold that triggers landslide events in Amboori, Kerala, India. Amboori is a tropical area that is highly vulnerable to landslides. The 2, 3, and 5-day antecedent rainfall data versus daily rainfall was clustered to identify a cluster of critical events that could potentially trigger landslides. Further, the cluster of critical events was utilized for regression analysis to develop the threshold equations. The 5-day antecedent (x-variable) vs. daily rainfall (y-variable) provided the best fit to the data with a threshold equation of y = 80.7–0.1981x. The intercept of the equation indicates that if the 5-day antecedent rainfall is zero, the minimum daily rainfall needed to trigger the landslide in the Amboori region would be 80.7 mm. The negative coefficient of the antecedent rainfall indicates that when the cumulative antecedent rainfall increases, the amount of daily rainfall required to trigger monsoon landslide decreases. The coefficient value indicates that the contribution of the 5-day antecedent rainfall is ∼20% to the landslide trigger threshold. The slope stability analysis carried out for the area, using Probabilistic Infinite Slope Analysis Model (PISA-m), was utilized to identify the areas vulnerable to landslide in the region. The locations in the area where past landslides have occurred demonstrate lower Factors of Safety (FS) in the slope stability analysis. Thus, rainfall threshold analysis together with the FS values from slope stability can be suitable for developing a simple, cost-effective, and comprehensive early-warning system for shallow landslides in Amboori and similar regions.  相似文献   

2.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

3.
ABSTRACT

This paper presents the spatial distribution, variation and trend of 5-day antecedent rainfall in Singapore based on rainfall data from 22 meteorological stations. The effect of climate was analyzed by dividing the study period into three decades i.e. Decade 1: 1982–1991, Decade 2: 1992–2001 and Decade 3: 2002–2011. Kriging interpolation was used for rainfall mapping. The results show that spatial distribution of 5-day antecedent rainfall does not coincide with that of the annual rainfall. The maximum annual rainfall occurred in the northwestern side of Singapore. On the other hand, the maximum 5-day antecedent rainfall occurred in the north and northeastern sides. The results of this study suggest that the climate change has increased the amount of 5-day antecedent rainfall quite significantly, i.e. from 420.5 (1987) to 592.9 mm (2006), thus affecting the vulnerability of the area with respect to rainfall-induced slope failure. The analyses also showed that most of slope failures were located in the north and northeast of Singapore between December and earlier March. More slope failures were observed in Decade 3 as compared to Decades 1 and 2. In other words, the analysis confirmed that 5-day antecedent rainfall had affected the slope stability in Singapore.  相似文献   

4.
This paper discusses the results of an investigation on the influence of rainfall intensity and duration on the suction distribution within a soil mass. A series of numerical analyses were conducted on an infinite slope model to simulate the responses of the slope consisting of typical soil types to various rainfall intensities and durations from selected locations in the Malaysian Peninsular. The study showed that the critical duration was governed by three major factors: the saturated permeability of the soil, the geographical location, and the depth of the slip plane. The critical rainfall duration for highly permeable soil was 1 day, while 30 days of antecedent rainfall were required for the stability analysis of a slope made of soil with low saturated permeability. The critical duration of antecedent rainfall in soils with intermediate saturated permeability was found to vary with the rainfall pattern. A chart is proposed to determine the critical duration, critical intensity and critical suction for each type of soil.  相似文献   

5.
Landslides are mainly triggered by decrease in the matric suction with deepening the wetting band by rainfall infiltrations. This paper reports rainfall-induced landslides in partially saturated soil slopes through a field study. A comprehensive analysis on Umyeonsan (Mt.) landslides in 2011 was highlighted. The incident involves the collapse of unsaturated soil slopes under extreme-rainfall event. Fundamental studies on the mechanism and the cause of landslides were carried out. A number of technical findings are of interest, including the failure mechanism of a depth of soil and effect of groundwater flow, the downward movement of wetting band and the increase of groundwater level. Based on this, an integrated analysis methodology for a rainfall-induced landslide is proposed in this paper that incorporates the field matric suction for obtaining hydraulic parameters of unsaturated soil. The field matric suction is shown to govern the rate of change in the water infiltration for the landslide analysis with respect to an antecedent rainfall. Special attention was given to a one-dimensional infiltration model to determine the wetting band depth in the absence of the field matric suction. The results indicate that landslide activities were primarily dependent on rainfall infiltration, soil properties, slope geometries, vegetation, and groundwater table positions. The proposed methodology has clearly demonstrated both shallow and deep-seated landslides and shows good agreement with the results of landslide investigations.  相似文献   

6.
Landslides are frequently occurring natural hazards in Nilgiris district of Tamil Nadu, India, particularly during monsoon season. The present study describes the geotechnical characterization and analysis of rainfall-induced landslide that occurred at Marappalam location of Nilgiris district on November 10, 2009. The detailed investigation comprises mapping of landslide, topographical survey, field and laboratory investigations, characterization of soil and rock, and numerical analysis. Field study comprises borehole and geophysical investigations. Detailed laboratory investigation was performed to identify index and engineering properties of soil and rock. Based on the results obtained from field and laboratory investigations, the generalized subsoil profile of Marappalam slope has been plotted. The investigations revealed that loose and soft soil layer with low permeability and plasticity interspersed with boulders could be the main source of debris flow. Scanning electron microscopic analysis and x-ray diffraction analysis were performed to study the influence of weathering on slope failure. Failure mechanism of Marappalam 2009 landslide was identified from the numerical analysis performed using landslide simulation program LS-RAPID. The analysis revealed that the 5-day antecedent rainfall (303 mm) and intense rainfall on 10th November 2009 (405 mm) saturate the slope due to infiltration of rainwater. This leads to a decrease in the matric suction and subsequent development of positive pore water pressure, which in turn reduces the shear resistance of the soil along with shear displacement, and resulted in a progressive failure.  相似文献   

7.
为了分析降雨入渗影响下非饱和土坡渗流特性,利用自制降雨模拟系统和实时监测系统,对降雨诱发非饱和土坡失稳过程进行全方位、多参量的实时监测,研究不同降雨条件下,不同坡度、不同压实度边坡坡体不同位置雨水入渗率和湿润峰的实变规律.结果表明:降雨入渗条件下,陡坡和高压实度土体不利于雨水入渗,而缓坡和低密实度土体入渗率变化快;实际土体吸力和含水量实时变化规律不同步,提出试验湿润峰概念,含水率(吸力)湿润峰点可按含水率(吸力)实时曲线的过渡区和雨后残余含水率(吸力)的线性交叉点确定;考虑单向吸湿或脱湿路径下土体含水率和吸力具有唯一对应关系,含水率湿润峰点与吸力湿润峰点的绝对值时差即为形成湿润峰所需时间;对比湿润峰实测值与Lumb半经验值散点分布规律,基于Lumb湿润峰深度计算公式提出非线性修正表达式.   相似文献   

8.
Rain-triggered slope failure of the railway embankment at Malda,India   总被引:2,自引:2,他引:0  
The common slope stability analysis is incapable of accurately forecasting shallow slides where suction pressures play a critical role. This realization is used for elaborate stability analyses which include soil suction to better predict rainfall-induced slides at railway embankment at Malda where three known cases of slope failures and train derailments occurred after heavy rainfall. The relationship between the soil–water content and the matric suction is established for the embankment soil. It is then used in the coupled analyses of seepage and slope stability to estimate performances of the embankment at different intensity and duration of rainfall. The numerical simulations are performed with the FE code Geo-Studio. The numerical results show significant reduction in the factor of safety of the railway embankment with the increase in the intensity and duration of rainfall. The effectiveness of the proposed mitigation measures including placement of 2 m-wide free draining rockfill across the slopes and drilling 5-m-long sheet pile wall at the toe of the embankment is studied numerically. The study confirms that the proposed mitigation measures effectively increase the factor of safety of the embankment and stabilizing it even in case of a heavy rainfall of 25 mm/h over 12 h.  相似文献   

9.
考虑前期降雨过程的边坡稳定性分析   总被引:4,自引:0,他引:4  
唐栋  李典庆  周创兵  方国光 《岩土力学》2013,34(11):3239-3248
基于三峡库区实测降雨资料,研究了不同初始条件对不同土体边坡稳定性影响,建议了能够反映边坡含水状态的初始条件选取方法。在此基础上,采用非饱和渗流分析方法研究了前期降雨对不同土体边坡稳定性影响,以典型的砂土和黏土边坡为例初步探索了前期降雨对边坡稳定性影响规律。结果表明:初始条件对不同土体边坡稳定性影响不同;建议将多年平均降雨量对应的稳态渗流场作为初始条件进行非饱和渗流分析。边坡土体渗透系数越低,边坡稳定性受前期降雨的影响越大、影响时间也越长。砂土和黏土边坡稳定性分析时建议至少考虑15 d以上的前期降雨,对于砂土边坡还应根据这15 d前面5 d的降雨情况确定是否需要增加计算天数。短历时高强度前期降雨对砂土边坡稳定性影响更大,而长历时低强度前期降雨对黏土边坡稳定性影响更大。累积前期降雨量可以作为判断边坡最小安全系数出现时刻的依据。砂土边坡出现最小安全系数时刻与10 d累积前期降雨量最大的时刻较为吻合,而黏土边坡则与15 d累积前期降雨量最大的时刻较为吻合。  相似文献   

10.
Transient seepage in unsaturated soil slope is one of the significant triggering factors in rainfall-induced landslides. Rainfall infiltration leads to the decrease in stabilizing effect because of increased positive pore-water pressures. SEEP/W and SLOPE/W used in this study have been widely employed to describe frameworks for understanding transient seepage in soil slope, and to perform slope stability analyses, respectively. The study area is in Sichon District in Nakhon Si Thammarat Province, southern Thailand. A landslide there was investigated by modeling the process of rainfall infiltration under positive and negative pore-water pressures and their effects on slope stability. GIS (Geographic Information System) and geotechnical laboratory results were used as input parameters. The van Genuchten’s soil water characteristic curve and unsaturated permeability function were used to estimate surface infiltration rates. An average rainfall was derived from 30-year monthly rainfall data between 1981 and 2011 in this area reported by the Thailand Royal Irrigation Department. For transient condition, finite element analysis in SEEP/W was employed to model fluctuations in pore-water pressure during a rainfall, using the computed water infiltration rates as surface boundary conditions. SLOPE/W employing Bishop simplified method was then carried out to compute their factors of safety, and antecedent precipitation indices (API) calculated. Heterogeneous slope at the site became unstable at an average critical API (APIcr) of 380 mm, agreeing well with the actual value of 388 mm.  相似文献   

11.
Landslides are a significant hazard in many parts of the world and represent an important geohazard in China. Rainfall is the primary triggering agent for landslides and often used for prediction slope failures. However, the relationship between rainfall and landslide occurrences is very complex. Great efforts have been made on the study of regional rainfall-induced landslide forecasting models in recent years; still, there is no commonly accepted method for rainfall-induced landslide prediction. In this paper, the quantitative antecedent soil water status (ASWS) model is applied to investigate the influence of daily and antecedent rainfall on the triggering of landslides and debris flows. The study area is Wudu County in Gansu Province, an area which exhibits frequent landslide occurrences. The results demonstrate a significant influence of high intensity rainfall events on landslide triggering. Still, antecedent rainfall conditions are very important and once a threshold of approximately 20 mm is exceeded, landslides and debris flows can occur even without additional rainfall. The study presented could also facilitate the implementation of a regional forecasting scheme once additional validation has been carried out.  相似文献   

12.
Slope stability has been identified as a major obstacle to construction in the rapidly developing countries of Indonesia and Malaysia. In these countries, slope failure has been identified as one of the most commonly occurring natural disasters, leading to financial losses and deaths. Slope failure is often related to prolonged rainfall events where rainfall infiltration increases pore water pressure, reducing soil strength. This failure mechanism will accelerate with the existence of cracks, which are usually caused by differential settling, drying and shrinking of soil, and associated construction activities, among other causes. The existence of cracks on slopes usually provides an easy pathway for rainfall infiltration into soil, allowing rain to infiltrate to deeper layers than in the absence of cracks. The moisture content in deep layers is therefore higher in cracked slopes than in slopes without cracks. To address this issue, we investigated the effects of cracks on slope stability when subjected to rainfall. The influence of crack location, depth, size, and direction on pore water pressure distribution and slope stability was studied by imposing different rainfall intensities. Analysis of seepage and stability were conducted using the GEO STUDIO 2007 softwares SEEP/W and SLOPE/W. Results suggested that pore water pressure and slope stability were influenced by the existence of cracks. Analysis showed that slope factors of safety decreased sharply when cracks were located adjacent to the slope crest, as compared to when cracks were located in the middle of the slope. Furthermore, slope factors of safety decreased with increasing crack depth. Pore water pressure and slope factors of safety decreased further when slopes were subjected to small rainfall intensities for long periods, as compared to when slopes were subjected to high rainfall intensities for short periods. The present study shows that study of cracks should be an integral part of the slope stability analysis.  相似文献   

13.
杨攀  杨军 《岩土力学》2015,36(Z1):169-174
在经验性降雨阈值和边坡稳定性数值分析两大类研究的基础上,考虑了降雨入渗和非饱和土性质,使用岩土有限元软件Plaxis高级模式对滑坡预警降雨阈值进行研究分析。算例表明,将降雨量在降雨时间范围内分成2段后,得到的边坡稳定性变化与实际情况更接近,重新定义前期降雨为在给定初始条件下引起边坡最危险滑裂面到坡面之间土体吸力分布发生变化的降雨。前期降雨时长与潜在滑裂面最大深度成正比,与饱和渗透系数成反比。将前期降雨量引入到降雨强度—持时曲线中作为第三个空间坐标轴,将该曲线拓展为前期降雨量-降雨强度-持时曲面。通过一基岩型边坡算例展示了阈值曲面的建立方法,并通过与模型试验数据的对比验证了其可靠性。  相似文献   

14.
In order to generate early warning for landslides, it is necessary to address the spatial and temporal aspects of slope failure. The present study deals with the temporal dimension of slope failures taking into account the most widespread and frequent triggering factor, i.e. rainfall, along the National Highway-58 from Rishikesh to Mana in the Garhwal Himalaya, India. Using the post-processed three-hourly rainfall intensity and duration values from the Tropical Rainfall Measuring Mission-based Multi-satellite Precipitation Analysis and the time-tagged landslide records along this route, an intensity–duration (ID)-based threshold has been derived as I?=?58.7D ?1.12 for the rainfall-triggered landslides. The validation of the ID threshold has shown 81.6 % accuracy for landslides which occurred in 2005 and 2006. From this result, it can be inferred that landslides in the study area can be initiated by continuous rainfall of over 12 h with about 4-mm/h intensity. Using the mean annual precipitation, a normalized intensity–duration relation of NI?=?0.0612D ?1.17 has also been derived. In order to account for the influence of the antecedent rainfall in slope failure initiation, the daily, 3-day cumulative, and 15- and 30-day antecedent rainfall values associated with landslides had been subjected to binary logistic regression using landslide as the dichotomous dependent variable. The logistic regression retained the daily, 3-day cumulative and 30-day antecedent rainfall values as significant predictors influencing slope failure. This model has been validated through receiver operating characteristic curve analysis using a set of samples which had not been used in the model building; an accuracy of 95.1 % has been obtained. Cross-validation of ID-based thresholding and antecedent rainfall-based probability estimation with slope failure initiation shows 81.9 % conformity between the two in correctly predicting slope stability. Using the ID-based threshold and the antecedent rainfall-based regression model, early warning can be generated for moderate to high landslide-susceptible areas (which can be delineated using spatial integration of preconditioning factors). Temporal predictions where both the methods converge indicate higher chances of slope failures for areas predisposed to instability due to unfavourable geo-environmental and topographic parameters and qualify for enhanced slope failure warning. This method can be verified for further rainfall seasons and can also be refined progressively with finer resolutions (spatial and temporal) of rainfall intensity and multiple rain gauge stations covering a larger spatial extent.  相似文献   

15.
Rainfall infiltration poses a disastrous threat to the slope stability in many regions around the world. This paper proposes an extreme gradient boosting (XGBoost)-based stochastic analysis framework to estimate the rainfall-induced slope failure probability. An unsaturated slope under rainfall infiltration in spatially varying soils is selected in this study to investigate the influences of the spatial variability of soil properties (including effective cohesion c′, effective friction angle φ′ and saturated hydraulic conductivity ks), as well as rainfall intensity and rainfall pattern on the slope failure probability. Results show that the proposed framework in this study is capable of computing the failure probability with accuracy and high efficiency. The spatial variability of ks cannot be overlooked in the reliability analysis. Otherwise, the rainfall-induced slope failure probability will be underestimated. It is found that the rainfall intensity and rainfall pattern have significant effect on the probability of failure. Moreover, the failure probabilities under various rainfall intensities and patterns can be easily obtained with the aid of the proposed framework, which can provide timely guidance for the landslide emergency management departments.  相似文献   

16.
The shallow deposits of unsaturated pyroclastic soils covering the slopes in the Campania region (southern Italy) are systematically affected by various rainfall-induced slope instabilities. The type and triggering of these instabilities depend on several factors, among which in situ soil suction—as an initial condition—and rainfall—as a boundary condition—play a fundamental role. Based on the available database—which includes a comprehensive catalogue of historical data, in situ soil suction measurements and soil laboratory tests along with the results of geomechanical analyses—this paper discusses the relationships among in situ soil suction and rainfall conditions and induced slope instability types. The goal is to reach a better understanding of past events and gain further insight into the analysis and forecasting of future events. In particular, the paper outlines how the season strongly affects the spatial distribution and the type of slope instability likely to develop. For example, erosion phenomena essentially occur at the end of the dry season and originate hyperconcentrated flows while first-time shallow slides prevail in the rainy season and later propagate as debris flows or as debris avalanches.  相似文献   

17.
A potential head ward retreat landslide area was identified in Munnar, a hill station in Western Ghats of Kerala, India. This imminent landslide was suspected to be formed in three different stages viz., evolution of plateau region, upliftment of the plateau region and the consequent slope modification which ultimately facilitated landslide occurrence. Geophysical study through vertical electrical sounding reveals that more than 11 m thick soil is still left in an overhanging position in the crown portion of the landslide and the thickness continues to the top of that ridge. In the event of high rainfall, the land can fail as there is no toe support, and the slope angle is >40º. This area is adjacent to a college building and in the event of any further landslide, the consequence will be high. Slope stability analysis using one-dimensional infinite slope stability model reveals that the entire area occupied by the college and the adjacent areas are unstable even in dry conditions. Rainfall threshold analysis shows that the landslide occurred due to very high amount of a 5-day antecedent rainfall rather than a daily rainfall during the monsoon. All these point towards a pressing requirement of landslide management practices in this area. This study also attempts to suggest a few management practices to minimize the effect of landslides.  相似文献   

18.
降雨诱发浅层滑坡稳定性的计算模型研究   总被引:6,自引:0,他引:6  
李宁  许建聪  钦亚洲 《岩土力学》2012,33(5):1485-1490
我国是一个滑坡灾害频发的国家,众多事实表明:降雨是影响边坡稳定性,导致边坡失稳的最主要和最普遍的环境因素,是浅层滑坡的触发因素。为了更好地对降雨诱发浅层滑坡进行研究,采用非饱和土VG模型与改进的Green-Ampt入渗模型对Mein-Larson降雨入渗模型进行改进,并结合无限边坡提出了一个降雨诱发浅层滑坡的简化计算模型。与以往提出的简化计算模型相比,该模型既考虑了坡面倾斜的影响,又考虑了非饱和土的特性,并可用于两种降雨形式下的边坡浅层稳定性估算,具有更广的应用范围。通过与有限元得到的结果进行比较可得:在不同降雨条件下,该计算模型得到的各项结果与数值解是接近的,安全系数计算结果是偏于安全的,因此,可将该计算模型用于降雨诱发浅层滑坡的近似估算;该计算模型公式简单,便于计算,计算效率较高。  相似文献   

19.
Slope failure usually occurs when soil particles are unable to build a strong bond with each other and become loose because of the presence of water. Water pressure weakens the ties between the particles and they tend to slip. Therefore, this study focused on the use of horizontal drains to reduce water entry and control the ground water level as a method of slope stabilization. Several previous studies have shown that the use of horizontal drains to lower the water level in soil is one of the fastest and cheapest slope stabilization methods. The main objective of this study is to analyze the effect of horizontal drains on slope stability. Information on slope condition during the landslides which happened at Precinct 9, Putrajaya, Malaysia was used for analytical simulation. Seep/W and Slope/W analyses were carried out with GeoStudio version 2007 software. Slopes with and without horizontal drains were then compared in terms of groundwater level and factor of safety (FOS) values. Scenarios were created for seven types of soil namely: residual, clay, silt, loam, sandy loam, sandy clay loam, and silt clay loam for a case wise analysis. The effect of daily steady rainfall and realcondition rainfall was studied. These cases were studied to find the effectiveness of horizontal drains as a slope stabilization tool. The results revealed that when a drain was installed on a slope, the groundwater level dropped immediately and the safety factor of the slope increased. Sandy loam (sL) soil was identified as the best candidate for a horizontal drain. Its highly saturated hydraulic conductivity Ks facilitated groundwater drain through the horizontal drain effectively. Silt clay loam (scL) soil was identified as the least effective candidate.  相似文献   

20.
降雨是诱发边坡失稳破坏的主要原因,本文以坡地水文模型为基础,结合无限边坡稳定计算模型,研究降雨条件下边坡启动的临界降雨条件。通过工程算例表明:降雨量与边坡体稳定系数成反比;滑坡启动的临界降雨量随边坡坡度的增大而减少;随边坡土体内摩擦角的增加而逐渐增加,此分析对降雨型滑坡的研究有借鉴性的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号