首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryo  Anma  Richard  Armstrong  Toru  Danhara  Yuji  Orihashi Hideki  Iwano 《Island Arc》2006,15(1):130-142
Abstract   The Late Miocene–Pliocene Taitao ophiolite is composed of a complete sequence of classic oceanic lithosphere and is exposed approximately 50 km southeast of the Chile triple junction, where the Chile Ridge subducts beneath the South American Plate. Gabbros and ultramafic rocks are folded into a complex pattern, but only evidence for block rotation has been reported in the overriding sheeted dyke complex. In the present study, sensitive high mass-resolution ion microprobe U–Pb and fission-track dating methods were applied to zircon crystals separated from gabbros and sheeted dykes. Two sets of radiometric ages of gabbros range between 5.9 ± 0.4 and 5.6 ± 0.1 Ma. These ages coincide within their error ranges and imply rapid intrusion and cooling of gabbros. The U–Pb age of a dacite dyke intruded into the sheeted dyke complex was determined to be 5.2 ± 0.2 Ma. These data indicate that the magmas of the Taitao ophiolite were formed during the 6 Ma Chile Ridge collision event and emplaced in a shorter period than previously thought. A short segment of the Chile Mid-oceanic Ridge must have been emplaced during the 6 Ma event.  相似文献   

2.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

3.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

4.
K-Ar dating on separated minerals from the infra-peridotitic metamorphic soles outcropping beneath various eastern Mediterranean ophiolite complexes (Pindos nappe in Greece; Lycian, Antalya, Beysehir-Hoyran, Mersin and Pozanti-Karsanti nappes in the Taurides belt. Turkey; Baër-Bassit nappe in Syria) shows that the main metamorphic recrystallization of those rocks occurred 25–30 m.y. prior to the tectonic emplacement of the ophiolite complexes onto a continental platform. These data support the hypothesis of an early slicing of the oceanic crust before its obduction, advocated recently by several authors.  相似文献   

5.
The REM(AF) method is a new tool for the analysis of the origin and alternating field demagnetization coercivity spectra of the remanent magnetization. We applied this method on precambrian Gila diabase sheets from Arizona in order to identify the high coercivity magnetic carrier, and on artificially shocked Rowley Regis basalt from UK in order to analyze the effect of the shock on the natural remanent magnetization. In the Gila diabase the high coercivity magnetic component was identified to be most likely represented by the acicular magnetite (increase in the efficiency ratio in the high coercivity region). In the Rowley Regis basalt, the REM(AF) analysis revealed that comparing to NRM, the shock produced a different distribution of the AF demagnetization coercivity spectra due to the occurrence of the Shock Remanent Magnetization.  相似文献   

6.
The stability of natural remanent magnetization of three samples of oceanic basalts (DSDP Leg 25) is tested by alternating fields, thermal and pressure demagnetization. The possibility of low-temperature oxidation is examined by means of thermomagnetic curves.The effects of uniaxial compressions on initial susceptibility and induced magnetization are studied for the three samples. These experiments, performed in a field comparable to the geomagnetic field have shown large variations of magnetization. The results of paleomagnetism, as well as the interpretation of anomalies when the effects of the pressure of water and of possible sediments far from the ridge itself are taken into account, are discussed. The results could partly account for the decrease of magnetic anomaly amplitudes with distance from the mid-ocean ridge.  相似文献   

7.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   

8.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


9.
华北地块早古生代地层单元的岩石磁学特征研究   总被引:1,自引:1,他引:1       下载免费PDF全文
通过对采自华北地块西部鄂尔多斯盆地边缘早古生代地层单元中的44块定向岩芯样品的岩石磁学实验(饱和等温剩磁及剩磁矫顽力的测量,三轴磁化的饱和等温剩磁的系统热退磁和低温实验)研究,揭示出华北地块早古生代地层单元的各类岩石中,主要载磁矿物的构成具有磁铁矿或赤铁矿与中等居里温度的磁黄铁矿、磁赤铁矿等共存的特征;个别地层单元的岩石中以极低居里点的针铁矿为主要载磁矿物.  相似文献   

10.
Yasuto  Itoh  Kenji  Amano Naoki  Kumazaki 《Island Arc》2006,15(1):165-177
Abstract   Tectonic episodes in a sedimentary basin are described on the basis of an integrated study combining reflection seismic interpretation, drilling survey and paleomagnetism. A shallow inclined borehole penetrated a fault shown by reflection seismic and geological surveys in the Mizunami area, in the eastern part of southwest Japan. Paleomagnetic measurements were carried out on core samples successfully oriented using side-wall image logging of structural attitude. At six horizons, stable characteristic remanent magnetization (ChRM) was confirmed through thermal and alternating field demagnetization tests, which were carried by magnetite with minor amounts of high coercivity minerals, as revealed by experiments of stepwise acquisition of isothermal remanent magnetization. After correction of multiphase deformation inferred from borehole structural analysis, ChRM directions were combined with previous data and confirmed an easterly deflection reflecting the coherent clockwise rotation of the arc before the Middle Miocene. Compilation of reliable paleomagnetic data described differential rotation of the eastern part of southwest Japan raised by collision of the Izu–Bonin Arc since the Middle Miocene. The present study suggests that (i) the Mizunami area is adjacent to a highly deformed zone bounded by the Akaishi Tectonic Line (ATL), and (ii) forearc deformation of southwest Japan is localized around the ATL, which is quite different from gradual bending on the back-arc side without remarkable crustal break related to the collision event.  相似文献   

11.
本文对"鲁科一井"(CCSD-LK-Ⅰ)768.9~1112.3m之间的上白垩统沉积岩样品进行了岩石磁学、磁化率各向异性(AMS)以及天然剩磁组分的研究.在此基础上,分析了利用特征剩磁(ChRM)和黏滞剩磁(VRM)方向恢复岩芯原始方位的可行性.三轴等温剩磁热退磁曲线、磁滞回线、反向场退磁曲线、一阶反转曲线等岩石磁学测量结果表明,沉积岩的主要载磁矿物为磁铁矿和赤铁矿.335块样品的AMS测量结果表明磁化率椭球主轴的最大轴K1和中间轴K2与水平面夹角较小,最小轴K3接近垂直于水平面分布,说明沉积岩保留了原始沉积磁组构特征.系统热退磁实验表明,多数样品在25~350℃和500~690℃温度段分别获得VRM和ChRM分量.利用ChRM偏角方向,并考虑构造旋转量校正,对VRM偏角方向进行恢复,Fisher统计得到DVRM=-1.3°,IVRM=59.6°,与当地现代地磁场方向(D=-6.7°,I=53.9°)基本一致.用ChRM偏角方向对磁化率主轴K1偏角方向进行校正,校正的结果为:D_(ch_K1)=349.2°,I_(ch_K1)=-0.7°.本文研究结果对于地质勘探中利用古地磁学方法恢复钻孔岩芯原始方位具有一定参考意义.  相似文献   

12.
Magnetic properties of minerals may be sensitive indicators of provenance. Remanence-bearing minerals (RBM) such as iron–titanium oxides, and matrix-forming minerals such as paramagnetic phyllosilicate or diamagnetic calcite yield different clues to provenance, strain history and tectonics, and are essential supplements for the full interpretation of palaeomagnetic data. Moreover, mineral magnetic properties provide magnetic-petrofabric indicators of tectonic strain, determine the suitability of sites for palaeomagnetism, and permit the restoration of palaeomagnetic vectors in some strained rocks. In the Cretaceous Troodos ophiolite (~88 Ma) magnetic properties are dictated by the relative importance of mafic silicates and largely primary, ophiolite-derived RBM. In its cover of deformed pelagic sedimentary rock, magnetic properties are dictated by the balance of clastic RBM versus matrix calcite and in some cases clay. The two larger Cretaceous ophiolite outcrops (Troodos & Akamas) share a common orientation of their plutonic flow fabrics, determined by magnetic methods. The dike complex shows fabrics indicating plume-like feeders spaced along and perpendicular to the spreading axis, with longevities >0.5 Ma. South of the ophiolite, its Cretaceous-Miocene limestone cover possesses ubiquitous tectonic petrofabrics inferred from anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent susceptibility (AARM). Its foliation and maximum extension dip and plunge gently northward, sub-parallel to a common but previously unreported North-dipping stylolitic cleavage. In well-known localized areas, there are S-vergent thrusts and overturned folds. The S-vergent deformation fabrics are due to Late Miocene (pre-Messinian ~8 Ma) deformation. The structures are geometrically consistent with overthrusting of the Cretaceous Troodos-Akamas ophiolite, and its sedimentary cover, onto the underlying Triassic Mamonia terrane. The northern limit of pre-Messinian tectonic fabrics, the Troodos-Mamonia terrane boundary and the Arakapas-Transform fault form an approximate E–W composite boundary that we term the Troodos Tectonic Front. Miocene deformation remagnetized the ophiolite and its sedimentary cover in many places and also affects the Mamonia terrane to the SW, with which the Troodos terrane docked in the late Cretaceous. Magnetic mineralogy, particularly of the RBM traces the progressive un-roofing of the ophiolite during the deposition of its sedimentary cover. During the submarine exposure and erosion of the ophiolite, the contribution of RBM clasts to the overlying sedimentary cover changed qualitatively and quantitatively. Thus, magnetic mineralogy of the sedimentary rock cover records the progressive denudation of the ophiolite from lavas, down through dikes, to gabbros and deeper mantle rocks. Palaeomagnetic studies previously revealed the anticlockwise rotation of the Troodos terrane and its northwards migration. Characteristic remanent magnetism (ChRM) is most reliable for lavas and dikes although it is usually carried by recrystallized RBM. These correspond to the age of greenschist facies ocean-floor metamorphism, perhaps 7–15 Ma after igneous crystallization with an extent and depth dependent on depth and degree of hydrothermal circulation. The gabbros and mantle rocks commonly bear young (<12 Ma) remanences probably acquired (or re-acquired) during uplift of the Troodos terrane. In the cover of pre-Messinian deformed limestone (>8 Ma), the remagnetizing effects of penetrative strain have been under-estimated. Where strain has occurred, un-tilting procedures produce erroneous restorations for the remanence vectors, and thus for the associated paleopoles. We find that de-straining of limestone sites most appropriately restores ChRM vectors to their original orientation. The best-determined and restored ChRMs define an apparent polar wander path (APWP). Since the APWP terminates at the present N-pole, we inverted it to determine the true plate-motion of the Troodos-terrane. Thus, in present-day coordinates, Troodos rocks moved ~1,000 km South; then ~4,500 km East and finally ~900 km North at an approximate rate of 75 km/Ma [1 km/Ma = 1 mm/a]. This true motion path commenced ~88 Ma ago and rates of motion since 65 Ma may be too high due to the limited precision of strain-corrections of the ChRM orientations in limestone. This true motion path is compatible with the eastward and then northward rotation of Africa relative to Europe although other workers show relative motion paths.  相似文献   

13.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

14.
Magnetic carriers in remagnetized Cretaceous granitic rocks of northeast Japan were studied using paleomagnetism, rock magnetism, optical microscopy and scanning electron microscopy (SEM) by comparison with unremagnetized granitic rocks. The natural remanent magnetization (NRM) of the remagnetized rocks is strong (0.3–1.7 A/m) and shows a northwesterly direction with moderate inclination (NW remanence), whereas the unremagnetized rocks preserve weak NRM (<0.5 A/m) with westerly and shallow direction (W remanence). Although thermal demagnetization shows that both NRMs are carried by magnetite, the remagnetized rocks reveal a higher coercivity with respect to alternating field demagnetization (20 mT相似文献   

15.
Over 500 oriented samples of felsic rocks of Cretaceous to Middle Miocene age were collected along the Go¯River in the central part of Southwest Japan, in an attempt to detect the process of tectonic rotation of Southwest Japan from the paleomagnetic view point. Thermal demagnetization was successful in isolating characteristic directions from the remanent magnetization of samples. Reliability of the paleomagnetic direction is ascertained through the agreement of directions from different kinds of rocks as well as the presence of both normal and reversed polarities. The paleomagnetic results establish that Southwest Japan began to rotate clockwise through58 ± 14° later than 28 Ma and ceased its motion by about 12 Ma. Southwest Japan has undergone no detectable north-south translation since 28 Ma. These results imply that southwest Japan was rotated about the pivot around 34°N, 129°E between 28 Ma and 12 Ma in association with the opening of the Japan Sea.  相似文献   

16.
On the basis of the synthetic studies of geology and geochemistry, an ophiolitic tectonic melange waa discovered in Sanligang-Sanyang area, the western part of Xiangfan-Guangji fault, the south margin of the Qinling Orogenic Belt. It is composed of different tectonic blocks with different lithological features and ages, mainly including the Huashan ophiolite blocks, Xiaofu Island-arc volcanic blocks, pelagic sediments, fore-arc volcanic-sedimentary system, and the massif of the basement and the covering strata of the Yangtze Block. These massifs were emplaced in the western part of Xiangfan-Guangji fault, the boundary between the Qinling Orogenic Belt and Yangtze Block, contacting each other by a shear zone or chaotic matrix. The characteristics of geochemistry indicate that the bash of the Huashan ophiolite are similar to mid-oceanic ridge basalts (MORB) formed in an initial oceanic baain, and the Xiaofu volcanic rocks are formed in a tectonic setting of island arc. The ophiolitic tectonic melange is the fragments of subduction wedge, which implies that there has been an oceanic basin between Qinling Block and Yangtze Block. Project supported by the National Natural Science Foundation of China (Grant Nos. 49773187, 49732080)  相似文献   

17.
Abstract Several linear magnetic anomalies over continental crust have been identified in and around the Japanese Islands. The anomalies are probably related to island arc tectonic structures, but identifying specific sources has been difficult. Several deep holes were drilled in and around Aso caldera, where a linear anomaly occurs along an active fault. One drillhole located on the linear anomaly encountered a zone of highly magnetized and altered basement rocks at least 100 m thick at a depth of ∼1000 m. The other hole was located away from the anomaly and did not encounter any high-magnetic zones. Rocks from the zone have exceptionally strong remanent magnetization (several tens of A/m) sub-parallel to the present field. AF demagnetization experiments indicated that the magnetization is hard and stable. Magnetic modeling indicates that the linear anomaly is caused mainly by this layer. Microscopic examination of core samples shows that the highly magnetized zone includes secondary magnetic minerals and abundant hydrothermal alterations. Temperatures determined by fluid inclusions and down-hole temperatures show that the temperature of the highly magnetized zone was elevated in the past relative to surrounding rocks. The high temperature could destroy primary magnetic minerals and replace them with secondary magnetic minerals. Thus, the past hydrothermal system may have enhanced thermo-chemical remanent magnetization. The results can produce a model indicating that there was a past hydrothermal system related to the tectonic structure.  相似文献   

18.
Summary With the decreasing magnitude of the initial remanent condition of rocks, their pressure demagnetization gradually changes to pressure remanent magnetic polarization under elastic deformation. In both cases the physical cause of these changes are the irreversible changes of the domain structure of ferrimagnetic minerals. Under directional pressure the natural remanent magnetic polarization is affected namely by the generation of a relatively little stable pressure remanent magnetic polarization. With regard to paleomagnetic research, the essential thing is that secondary magnetization combined with possible elastic deformations of rocks in the Earth's crust can be eliminated relatively easily by magnetic cleaning.  相似文献   

19.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


20.
Measurement of the remanent magnetization of samples of Jurassic oceanic red sediments recovered in the western Atlantic on Leg 11, site 105 of the Deep Sea Drilling Project yields quite different results, depending on the demagnetization processes used. Both the Jurassic section and the Berriasian-Valanginian part of the Lower Cretaceous were measured, but with less satisfactory results for the Lower Cretaceous. The natural remanent magnetization of the Jurassic section is almost entirely normal, with 44.6° inclinations (standard deviation = 13.9°) and is not changed by 1000 Oe alternating field (AF) demagnetization. Thermal demagnetization to temperatures of 630°C brings the inclination and polarity sequence in line with that expected for Oxfordian through Tithonian time at this site. The average inclination after thermal demagnetization is 22.1°, standard deviation = 12.1°, and the polarity pattern is one of frequently alternating polarity, much more similar to published reversal patterns for this time than the all normal results of AF demagnetization. The polarity pattern is not identical to the published ones as a result of insufficiently detailed sampling. Thermomagnetic and X-ray analyses were ambiguous, but suggest the presence of titanomagnetite, hematite, and possibly titanomaghemite and pyrrhotite. The primary remanence is carried by hematite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号