首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voitenko  Yurii M. 《Solar physics》1998,182(2):411-430
At the onset of a solar flare, initiated by magnetic reconnection high in the corona, reconnection outflow sets up warm proton beams (PBs), streaming down along just-reconnected field lines through steady underlying plasma. Incorporating this scenario, we study excitation of kinetic Alfvén waves (KAWs) by PBs, keeping the effects of a beam-induced electric field and thermal effects. Taking into account the high growth rate (105 s–1), short relaxation distance (106 cm), and energy flux partition between the waves and the beam after relaxation (PKAW/PPB1), we conclude that PB-driven KAW instability is an efficient energy conversion mechanism in flaring loops. The quasilinear spectral energy concentration at the largest wavenumbers indicates the possibility of nonlinear spectral modification. We suggest that the resulting turbulence of KAWs plays an important role in the flare plasma energization.  相似文献   

2.
Craig  I.J.D.  Watson  P.G. 《Solar physics》2000,191(2):359-379
Flux pile-up magnetic merging solutions are discussed using the simple robust arguments of traditional steady-state reconnection theory. These arguments determine a unique scaling for the field strength and thickness of the current layer, namely B s–1/3, l2/3, which are consistent with a variety of plasma inflow conditions. Next we demonstrate that flux pile-up merging can also be understood in terms of exact magnetic annihilation solutions. Although simple annihilation models cannot provide unique reconnection scalings, we show that the previous current sheet scalings derive from an optimized solution in which the peak dynamic and magnetic pressures balance in the reconnection region. The build-up of magnetic field in the current sheet implicit in flux pile-up solutions naturally leads to the idea of saturation. Hydromagnetic pressure effects limit the magnetic field in the sheet, yielding an upper limit on the reconnection rate for such solutions. This rate is still far superior to the Sweet–Parker merging rate, which can be derived by seeking solutions that avoid all forms of saturation. Finally we compare time dependent numerical simulations of the coalescence instability with the optimized flux pile-up models. This comparison suggests that merging driven by the relatively slow approach of large flux systems may be favored in practice.  相似文献   

3.
Slow-mode shocks produced by reconnection in the corona can provide the thermal energy necessary to sustain flare loops for many hours. These slow shocks have a complex structure because strong thermal conduction along field lines dissociates the shocks into conduction fronts and isothermal subshocks. Heat conducted along field lines mapping from the subshocks to the chromosphere ablates chromospheric plasma and thereby creates the hot flare loops and associated flare ribbons. Here we combine a non-coplanar compressible reconnection theory with simple scaling arguments for ablation and radiative cooling, and predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G the temperature of the hot flare loops decreases from 1.2 × 107 K to 4.0 × 106 K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0% to 86% of the total field. When the perpendicular component exceeds 86% of the total field or when the altitude of the reconnection site exceeds 106km, flare loops no longer occur. Shock enhanced radiative cooling triggers the formation of cool H flare loops with predicted densities of 1013 cm–3, and a small gap of 103 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.  相似文献   

4.
Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that ?1.4×1043 Mx2 of magnetic helicity was injected into the active region during the 40-hour buildup prior to the flare. The magnetic model places a lower bound of 8×1031 ergs on the energy stored by this motion. It predicts that 5×1021 Mx of flux would need to be reconnected during the flare to release the stored energy. This total reconnection compares favorably with the flux swept up by the flare ribbons, which we measure using high-time-cadence TRACE images in 1?600 Å. Reconnection in the model must occur in a specific sequence that would produce a twisted flux rope containing significantly less flux and helicity (1021 Mx and ?3×1042 Mx2, respectively) than the active region as a whole. The predicted flux compares favorably with values inferred from the magnetic cloud observed by Wind. This combined analysis yields the first quantitative picture of the flux processed through a two-ribbon flare and coronal mass ejection.  相似文献   

5.
An analysis of the growth of X-ray loops in the flare of 21 May, 1980, observed by HXIS on board SMM spacecraft, has been carried out with high time resolution in six energy channels from 3.5 to 30 keV. This analysis has revealed that the tops of the loops stay for minutes at a given altitude before, quite abruptly, other loop tops begin to appear above them. One of the jumps in altitude, from 27 000 to 45 000 km if the loops extended radially, which occurred quite late in the flare development, is studied in detail. The fact that the tops, of higher loops were first seen in the 22–30 keV energy channel, and only minutes later at lower energies, suggests a new release of energy in a very small volume high in the corona. An initial temperature of at least 50 × 106 K is indicated by the data, inside a volume which may not exceed a few hundred km in diameter. A magnetic reconnection of previously distended field lines appears to be a likely candidate for the observed phenomenon.We also give some revised values of the characteristic parameters of the whole system of loops in this flare which has been the topic of several other studies.  相似文献   

6.
The September 1, 1971 flare in McMath region 11482 was projected to have occurred 30° behind the west limb. An anisotropic Ground Level Effect (GLE) began <30 min after the inferred explosive phase of the flare. We attribute the rapid injection of relativistic protons onto the earth spiral field line to a shock wave associated with an observed type II burst.  相似文献   

7.
We propose in the present paper that the basic behaviors of newly-emerged magnetic regions (NEMR) as seen in EUV and soft X-rays from space are interpreted by the interchange instability of the magnetic field of NEMR in the global situation surrounding it.It is shown that the situation with the NEMR is unstable against the interchange instability, and a continual relaxation to the lower energy state, or a continual invasion of the magnetic flux of the NEMR to the ambient region in the form of fine bundles or thin sheets, will take place in a short time scale of 1 L/V A following the change in the boundary condition at the photosphere. The second and the final relaxation is shown to be the enhanced Joule dissipation in a time scale of hours to several days occurring in the thin current sheets on the interface of this intermingled structure which is distributed in a large volume. This hypothesis may provide an explanation for the heating of NEMR to an X-ray emitting temperature, which is otherwise rather difficult to explain. The observed fast reconnection without appreciable flares (except for some smaller brightenings) is another aspect which can be explained in the present hypothesis. Namely, since the situation with the NEMR is unstable for the interchange from the beginning, the stressed configuration is relaxed before storing appreciable energy in the form of magnetic stress and therefore without a drastic release of a large amount of stored stress energy in the form of a flare.  相似文献   

8.
We present observations of the flare of May 14, 1981, which can be classified as a three-ribbon flare. After a detailed analysis in metric, decimetric, microwave, optical, and X-ray ranges we propose that the event was caused by a reconnection process driven by erupting filament. The energy was liberated in the current sheet above the filament in the region between the erupting flux and the overlying field. It is shown that plasma microinstabilities develop as the plasma enters the current sheet. The observations indicate that during the precursor phase a certain low-frequency turbulence, such as ion-accoustic turbulence had to be present.The reconnection rate was growing due to the increasing tension of the stretched overlying field. It is shown that the reconnection proceeded in the Sonnerup-Petschek regime during the precursor, and changed to the pile-up regime in the fast reconnection phase, when the maximal lateral expansion (50 km s–1) of the H ribbons was observed. The proposed process of reconnection driven by an erupting filament can be applied to three- and four-ribbon flares.  相似文献   

9.
We compare simultaneous high resolution soft X-ray and 6 cm images of the decay phase of an M3 X-ray flare in Hale Region 16413. The photographic X-ray images were obtained on an AS & E sounding rocket flown 7 November, 1979, and the 6 cm observations were made with the VLA. The X-ray images were converted to arrays of line-of-sight emission integrals and average temperature throughout the region. The X-ray flare structure consisted of a large loop system of length 1.3 arc min and average temperature 8 × 106 K. The peak 6 cm emission appeared to come from a region below the X-ray loop. The predicted 6 cm flux due to thermal bremsstrahlung calculated on the basis of the X-ray parameters along the loop was about an order of magnitude less than observed. We model the loop geometry to examine the expected gyroresonance absorption along the loop. We find that thermal gyroresonance emission requiring rather large azimuthal or radial field components, or nonthermal gyrosynchrotron emission involving continual acceleration of electrons can explain the observations. However, we cannot choose between these possibilities because of our poor knowledge of the loop magnetic field.  相似文献   

10.
We present measurements of electric fields in quiescent prominences and in a small flare surge, obtained with the CRI electrograph at the NSO/SP 40 cm coronagraph, in 1993 and 1994. Our results on the 9 brightest quiescent prominences enable us to place r.m.s. upper limits ofE t < 2 – 5 V cm–1 on the component ofE transverse to the line of sight. We show that these upper limits may be difficult to reconcile with non-ideal MHD models of quiescent prominences formed in extended neutral sheets, whether or not the tearing mode instability is present. They do, however, seem consistent with ideal MHD models of prominence support. We point out also that these upper limits are within a factor 4 of the minimum value of anistropic electric field that exists due to motional Stark effect in any thermal plasma permeated by a directed magnetic field.Our data on the flare surge suggest an electric field of intensityE 35 V cm–1, oriented approximately parallel to the inferred magnetic field. This detection ofE needs to be verified in other flares. But we note that a detectableE would not be expected in the current interruption flare mechanism, if only a single double layer is present. We show further that the observed relatively narrow, approximately-Gaussian, and only slightly Doppler-shifted Paschen lines, seem inconsistent with the multiple double layers invoked in other models based on the current interruption mechanism. Our detection ofE does seem consistent with reconnection (including tearing-mode) models of flares, provided the field-aligned electrical conductivity is anomalous over substantial volumes of the plasma circuit joining the reconnecting domain to the photosphere.  相似文献   

11.
Meaurements of solar flare spectra have allowed the electric field strengths in two flares to be determined, using the Inglis-Teller formula. Further, an independently estimated value for the electron density has allowed the two components of this field, that is, the interionic component and the external component that arises, for example, through plasma instabilities, to be separately extracted. External electric field strengths 0.5 kV cm–1 for a limb flare and 1.3 kV cm–1 for a white-light flare are found. Estimates of electric fields strengths generated by the resistive magnetic tearing instability indicate that this process could account for a significant part of the electric field if pre-existing magnetic field strengths in the flaring regions are characterized by a few kilogauss. Other plasma processes probably contribute measurably as well.Operated by the Association of Universities for Research in Astronomy, Inc., under contract NSF AST84-18716 with the National Science Foundation.  相似文献   

12.
L. C. Lee  Y. Lin  G. S. Choe 《Solar physics》1996,163(2):335-359
Magnetic reconnection can take place between two plasma regions with antiparallel magnetic field components. In a time-dependent reconnection event, the plasma outflow region consists of a leading bulge region and a trailing reconnection layer. Magnetohydrodynamic (MHD) discontinuities, including rotational discontinuities, can be formed in both the bulge region and the trailing layer. In this paper, we suggest that the rotational discontinuities observed in the solar wind may be generated by magnetic reconnection associated with microflares in coronal holes. The structure of the reconnection layer is studied by solving the one-dimensional Riemann problem for the evolution of an initial current sheet after the onset of magnetic reconnection as well as carrying out two-dimensional MHD simulations. As the emerging magnetic flux reconnects with ambient open magnetic fields in the coronal hole, rotational discontinuities are generated in the region with open field lines. It is also found that in the solar corona with a low plasma beta ( 0.01), the magnetic energy is converted through magnetic reconnection mostly into the plasma bulk-flow energy. Since more microflares will generate more rotational discontinuities and also supply more energy to the solar wind, it is expected that the number of rotational discontinuities observed in the solar wind would be an increasing function of solar wind speed. The observation rate of rotational discontinuities generated by microflares is estimated to be dN RD/dt - f/63 000 s (f > 1) at 1 AU. The present mechanism favors the generation of rotational discontinuities with a large shock normal angle.  相似文献   

13.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

14.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

15.
From theH filtergram observations obtained at Ganyu station, identification and statistic works made for Ellerman bombs, it is found that they often occur in the superpenumbra area of a mature sunspot. We suggest a plasmoid model to account for the basic properties of a typical bomb: lifetime 11 min, diameter 5 × 107 cm, accompanying jet velocity 40 km/s, total energy 1027 erg,Te 104 K. First, a numerical simulation is made to prove that plasmoids can be lifted from the solar convective zone by magnetic buoyancy. Between the plasmoid and its surroundings a strong current sheet builds up in which a peculiar MHD (with plasma ponderamotive force) - resistive instability takes place. After the magnetic reconnection has begun, a local explosive instability ensues whose growth rate is so high that it allows the exhaustion of the high temperature particles from the sheet in a short period. In this way, the temperature of a bomb may be kept unchanged or only rise slightly.  相似文献   

16.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   

17.
H. Zirin 《Solar physics》1976,50(2):399-404
A large surge was observed on September 17, 1971, part of which, after travelling 200 000 km through the corona, returned to the surface to form a filament. The filament lasted about 30 min, then rose up and returned to the source of the surge. We interpret this as the filling of a semi-stable magnetic trap.The energetics of radio, X-ray, and surge expulsion are estimated. The radio spectrum and flux correspond to a thermal source of area 4 (arcmin)2, T 190 000 K, N e 2 V 7 × 1048, which is optically deep at 8800 MHz.The soft X-ray source has T 12 × 106 K, N e 2 V 3 × 1048; and if an equal mass is expelled in the surge, the kinetic energy of the surge is similar to the thermal energy of the X-ray source.  相似文献   

18.
Craig  I.J.D. 《Solar physics》2001,202(1):109-115
A physically based explanation is given for the distribution of flare energies N(E)E where 1.5. In contrast to previous approaches, the present treatment is based on a physical theory of the flare reconnection site. The central assumption is that topological flare energy, although released explosively, is slowly accumulated over several hundred Alfvén timescales. When coupled to the geometric properties of the reconnective flare source, this assumption is shown to lead naturally to a deduction of the flare energy distribution. Current sheet models yield the exponent whereas more compact current structures imply steeper spectra .  相似文献   

19.
Magnetic fluctuations in the hydromagnetic frequency band 0 to 0.05 Hz are examined at magnetospheric cusp latitudes during two times when ionospheric signatures of possible flux-transfer events were evident in the data. Ultralow frequency power is found to be very broad band in the range 0.02–0.05 Hz and to be more narrowly confined at a frequency 0.0025 Hz. At lower latitudes, the higher frequency (broad-band) power excites narrower-band field line resonances at the fundamental frequency of the respective field line — a standing Alfvén wave. The narrow-band power in the lower frequency band (period around 400 s) is approximately that expected for a field line resonance on a closed field line near the magnetopause; it also corresponds approximately to the width of the convected field-aligned current filament as observed on the ground. The reconnection process at the dayside magnetopause evidently plays an important role in the generation of low-frequency (0.008 Hz) hydromagnetic energy in the dayside magnetosphere, energy which can produce Alfvén waves deeper in the magnetosphere.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

20.
The evolution of coronal and chromospheric structures is examined together with magnetograms for the 1B flare of January 19, 1972. Soft X-ray and EUV studies are based on the OSO-7 data. The H filtergrams and magnetograms came from the Sacramento Peak Observatory. Theoretical force-free magnetic field configurations are compared with structures seen in the soft X-ray, EUV and H images. Until the flare, two prominent spots were connected by a continuous dark filament and their overlying coronal structure underwent an expansion at the sunspot separation rate of 0.1 km s–1. On January 19, the flare occurred as new magnetic fields emerged at 1019 Mx h–1 beneath the filament, which untwisted and erupted as the flare began. The pre-flare coronal emissions remained unchanged during the flare except for the temporary addition of a localized enhancement that started 5 min after flare onset. EUV lines normally emitted in the upper transition region displayed a sudden enhancement coinciding in time and location with a bright H point, which is believed to be near the flare trigger or onset point. The EUV flash and the initial H brightening, both of which occurred near the center of the activated filament, were followed by a second EUV enhancement at the end of the filament. The complete disruption of the filament was accompanied by a third EUV enhancement and a rapid rise in the soft X-ray emission spatially coincident with the disappearing filament. From the change of magnetic field inferred from H filtergrams and from force-free field calculations, the energy available for the flare is estimated at approximately 1031 erg. Apparently, changes in the overlying coronal magnetic field were not required to provide the flare energy. Rather, it is suggested that the flare actually started in the twisted filament where it was compressed by emerging fields. Clearly, the flare started below the corona, and it appears that it derived its energy from the magnetic fields in or near the filament.NCAR is sponsored by NSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号