首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present paper, wavelet analysis of total dissolved solid that monitored at Nazlu Chay (northwest of Iran), Tajan (north of Iran), Zayandeh Rud (central of Iran) and Helleh (south of Iran) basins with various climatic conditions, have been studied. Daubechies wavelet at suitable level (db4) has been calculated for TDS of each selected basins. The performance of artificial neural networks (ANN), two different adaptive-neurofuzzy inference system (ANFIS) including ANFIS with grid partition (ANFIS-GP) and ANFIS with subtractive clustering (ANFIS-SC), gene expression programming (GEP), wavelet-ANN, wavelet-ANFIS and wavelet-GEP in predicting TDS of mentioned basins were assessed over a period of 20 years at twelve different hydrometric stations. EC (μmhos/cm), Na (meq L?1) and Cl (meq L?1) parameters were selected (based on Pearson correlation) as input variables to forecast amount of TDS in four studied basins. To develop hybrid wavelet-AI models, the original observed data series was decomposed into sub-time series using Daubechies wavelets at suitable level for each basin. Based on the statistical criteria of correlation coefficient (R), root mean square error (RMSE) and mean absolute error (MAE), the hybrid wavelet-AI models performance were better than single AI models in all basins. A comparison was made between these artificial intelligence approaches which emphasized the superiority of wavelet-GEP over the other intelligent models with amount of RMSE 18.978, 6.774, 9.639 and 318.363 mg/l, in Nazlu Chay, Tajan, Zayandeh Rud and Helleh basins, respectively.  相似文献   

2.
Developing a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), Nash–Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.  相似文献   

3.
The growing shortage of freshwater resources and increasing environmental awareness give rise to the use of treated wastewater as an alternative resource for water supply. Accurate estimation of wastewater evaporation (WWE), as the main cause of water losses, is necessary for proper water resources management. Unfortunately, few studies have focused on modelling WWE despite its vital importance. This study investigates the ability of gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN) techniques to estimate WWE as a function of variables including wastewater properties, clear water evaporation and climatic factors. The study uses measured data from an experiment conducted in Neishaboor municipal wastewater treatment plant, Iran. Results indicate that the ANN model is superior among the three methods, and also demonstrates higher accuracy when compared with those of a dimensional analysis model using the F-test statistic.  相似文献   

4.
Z. X. Xu  J. Y. Li 《水文研究》2002,16(12):2423-2439
The primary objective of this study is to investigate the possibility of including more temporal and spatial information on short‐term inflow forecasting, which is not easily attained in the traditional time‐series models or conceptual hydrological models. In order to achieve this objective, an artificial neural network (ANN) model for short‐term inflow forecasting is developed and several issues associated with the use of an ANN model are examined in this study. The formulated ANN model is used to forecast 1‐ to 7‐h ahead inflows into a hydropower reservoir. The root‐mean‐squared error (RMSE), the Nash–Sutcliffe coefficient (NSC), the A information criterion (AIC), B information criterion (BIC) of the 1‐ to 7‐h ahead forecasts, and the cross‐correlation coefficient between the forecast and observed inflows are estimated. Model performance is analysed and some quantitative analysis is presented. The results obtained are satisfactory. Perceived strengths of the ANN model are the capability for representing complex and non‐linear relationships as well as being able to include more information in the model easily. Although the results obtained may not be universal, they are expected to reveal some possible problems in ANN models and provide some helpful insights in the development and application of ANN models in the field of hydrology and water resources. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, several types of adaptive network‐based fuzzy inference system (ANFIS) with different membership functions (MFs) and artificial neural network (ANN) were employed to predict hourly photochemical oxidants that were oxidizing substances such as ozone and peroxiacetyl nitrate produced by photochemical reactions. The results indicated that ANFIS statistically outperforms ANN in terms of hourly oxidant prediction. The minimum mean absolute percentage errors (MAPEs) of 4.99% could be achieved using ANFIS with bell shaped MFs. The maximum correlation coefficient, the minimum mean square errors, and the minimum root mean square errors were 0.99, 0.15, and 0.39, respectively. ANFIS's architecture consists of both ANN and fuzzy logic including linguistic expression of MFs and if‐then rules, so it can overcome the limitations of traditional neural network and increase the prediction performance.  相似文献   

6.
The issue of selecting appropriate model input parameters is addressed using a peak and low flow criterion (PLC). The optimal artificial neural network (ANN) models selected using the PLC significantly outperform those identified with the classical root‐mean‐square error (RMSE) or the conventional Nash–Sutcliffe coefficient (NSC) statistics. The comparative forecast results indicate that the PLC can help to design an appropriate ANN model to improve extreme hydrologic events (peak and low flow) forecast accuracy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The use of electrical conductivity (EC) as a water quality indicator is useful for estimating the mineralization and salinity of water. The objectives of this study were to explore, for the first time, extreme learning machine (ELM) and wavelet-extreme learning machine hybrid (WA-ELM) models to forecast multi-step-ahead EC and to employ an integrated method to combine the advantages of WA-ELM models, which utilized the boosting ensemble method. For comparative purposes, an adaptive neuro-fuzzy inference system (ANFIS) model, and a WA-ANFIS model, were also developed. The study area was the Aji-Chay River at the Akhula hydrometric station in Northwestern Iran. A total of 315 monthly EC (µS/cm) datasets (1984–2011) were used, in which the first 284 datasets (90% of total datasets) were considered for training and the remaining 31 (10% of total datasets) were used for model testing. Autocorrelation function (ACF) and partial autocorrelation function (PACF) demonstrated that the 6-month lags were potential input time lags. The results illustrated that the single ELM and ANFIS models were unable to forecast the multi-step-ahead EC in terms of root mean square error (RMSE), coefficient of determination (R2) and Nash–Sutcliffe model efficiency coefficient (NSC). To develop the hybrid WA-ELM and WA-ANFIS models, the original time series of lags as inputs, and time series of 1, 2 and 3 month-step-ahead EC values as outputs, were decomposed into several sub-time series using different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Coiflet of different orders at level three. These sub-time series were then used in the ELM and ANFIS models as an input dataset to forecast the multi-step-ahead EC. The results indicated that single WA-ELM and WA-ANFIS models performed better than any ELM and ANFIS models. Also, WA-ELM models outperformed WA-ANFIS models. To develop the boosting multi-WA-ELM and multi-WA-ANFIS ensemble models, a least squares boosting (LSBoost) algorithm was used. The results showed that boosting multi-WA-ELM and multi-WA-ANFIS ensemble models outperformed the individual WA-ELM and WA-ANFIS models.  相似文献   

8.
Accurate forecasting of sediment is an important issue for reservoir design and water pollution control in rivers and reservoirs. In this study, an adaptive neuro-fuzzy inference system (ANFIS) approach is used to construct monthly sediment forecasting system. To illustrate the applicability of ANFIS method the Great Menderes basin is chosen as the study area. The models with various input structures are constructed for the purpose of identification of the best structure. The performance of the ANFIS models in training and testing sets are compared with the observed data. To get more accurate evaluation of the results ANFIS models, the best fit model structures are also tested by artificial neural networks (ANN) and multiple linear regression (MLR) methods. The results of three methods are compared, and it is observed that the ANFIS is preferable and can be applied successfully because it provides high accuracy and reliability for forecasting of monthly total sediment.  相似文献   

9.
10.
Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropagation method and about 600 records from 39 California earthquakes. The statistics of the residuals or modeling error for the trained ANN-based models are almost the same as those for the parametric ground motion prediction equations, derived through regression analysis; the residual or modeling error can be modeled as a normal variate. The similarity and differences between the predictions by these two approaches are shown. The trained ANN-based models, however, are not robust because the models with almost identical mean square errors do not always lead to the same predictions. This undesirable behaviour for predicting the ground motion measures has not been shown or discussed in the literature; the presented results, at least, serve to raise questions and caution on this problem. A practical approach to ameliorate this problem, perhaps, is to consider several trained ANN models, and to take the average of the predicted values from the trained ANN models as the predicted ground motion measure.  相似文献   

11.
Accurate water level forecasts are essential for flood warning. This study adopts a data‐driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People's Democratic Republic. ANFIS is a hybrid system combining fuzzy inference system and artificial neural networks. Five ANFIS models were developed to provide water level forecasts from 1 to 5 days ahead, respectively. The results show that although ANFIS forecasts of water levels up to three lead days satisfied the benchmark, four‐ and five‐lead‐day forecasts were only slightly better in performance compared with the currently adopted operational model. This limitation is imposed by the auto‐ and cross‐correlations of the water level time series. Output updating procedures based on the autoregressive (AR) and recursive AR (RAR) models were used to enhance ANFIS model outputs. The RAR model performed better than the AR model. In addition, a partial recursive procedure that reduced the number of recursive steps when applying the AR or the RAR model for multi‐step‐ahead error prediction was superior to the fully recursive procedure. The RAR‐based partial recursive updating procedure significantly improved three‐, four‐ and five‐lead‐day forecasts. Our study further shows that for long lead times, ANFIS model errors are dominated by lag time errors. Although the ANFIS model with the RAR‐based partial recursive updating procedure provided the best results, this method was able to reduce the lag time errors significantly for the falling limbs only. Improvements for the rising limbs were modest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The accuracy of Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), wavelet-ANN and wavelet-ANFIS in predicting monthly water salinity levels of northwest Iran’s Aji-Chay River was assessed. The models were calibrated, validated and tested using different subsets of monthly records (October 1983 to September 2011) of individual solute (Ca2+, Mg2+, Na+, SO4 2? and Cl?) concentrations (input parameters, meq L?1), and electrical conductivity-based salinity levels (output parameter, µS cm?1), collected by the East Azarbaijan regional water authority. Based on the statistical criteria of coefficient of determination (R2), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency coefficient (NSC) and threshold statistics (TS) the ANFIS model was found to outperform the ANN model. To develop coupled wavelet-AI models, the original observed data series was decomposed into sub-time series using Daubechies, Symlet or Haar mother wavelets of different lengths (order), each implemented at three levels. To predict salinity input parameter series were used as input variables in different wavelet order/level-AI model combinations. Hybrid wavelet-ANFIS (R2 = 0.9967, NRMSE = 2.9 × 10?5 and NSC = 0.9951) and wavelet-ANN (R2 = 0.996, NRMSE = 3.77 × 10?5 and NSC = 0.9946) models implementing the db4 mother wavelet decomposition outperformed the ANFIS (R2 = 0.9954, NRMSE = 3.77 × 10?5 and NSC = 0.9914) and ANN (R2 = 0.9936, NRMSE = 3.99 × 10?5 and NSC = 0.9903) models.  相似文献   

13.
This study challenges the use of three nature‐inspired algorithms as learning frameworks of the adaptive‐neuro‐fuzzy inference system (ANFIS) machine learning model for short‐term modeling of dissolved oxygen (DO) concentrations. Particle swarm optimization (PSO), butterfly optimization algorithm (BOA), and biogeography‐based optimization (BBO) are employed for developing predictive ANFIS models using seasonal 15 min data collected from the Rock Creek River in Washington, DC. Four independent variables are used as model inputs including water temperature (T), river discharge (Q), specific conductance (SC), and pH. The Mallow's Cp and R2 parameters are used for choosing the best input parameters for the models. The models are assessed by several statistics such as the coefficient of determination (R2), root‐mean‐square error (RMSE), Nash–Sutcliffe efficiency, mean absolute error, and the percent bias. The results indicate that the performance of all‐nature‐inspired algorithms is close to each other. However, based on the calculated RMSE, they enhance the accuracy of standard ANFIS in the spring, summer, fall, and winter around 13.79%, 15.94%, 6.25%, and 12.74%, respectively. Overall, the ANFIS‐PSO and ANFIS‐BOA provide slightly better results than the other ANFIS models.  相似文献   

14.
The optimal operation of dam reservoirs can be programmed and managed by predicting the inflow to these structures more accurately. To this end, there are various linear and nonlinear models. However, some hydrological problems like inflow with extreme seasonal variation are not purely linear or nonlinear. To improve the forecasting accuracy of this phenomenon, a linear Seasonal Auto Regressive Integrated Moving Average (SARIMA) model is combined with a nonlinear Artificial Neural Network (ANN) model. This new model is used to predict the monthly inflow to the Jamishan dam reservoir in West Iran. A comparison of the SARIMA and ANN models with the proposed hybrid model’s results is provided accordingly. More specifically, the models’ performance in forecasting base and flood flows is evaluated. The effect of changing the forecasting period length on the models’ accuracy is studied. The results of increasing the number of SARIMA model parameters up to five are investigated to achieve more accurate forecasting. The hybrid model predicts peak flood flows much better than the individual models, but SARIMA outperforms the other models in predicting base flow. The obtained results indicate that the hybrid model reduces the overall forecast error more than the ANN and SARIMA models. The coefficient of determination of the hybrid, ANN and SARIMA models were 0.72, 0.64 and 0.58, and the root mean squared error values were 1.02, 1.16 and 1.27 respectively, during the forecast period. Changing the forecasting length also indicated that these models can be used in the long term without increasing the forecast error.  相似文献   

15.
Regional flood frequency analysis (RFFA) was carried out on data for 55 hydrometric stations in Namak Lake basin, Iran, for the period 1992–2012. Flood discharge of specific return periods was computed based on the log Pearson Type III distribution, selected as the best regional distribution. Independent variables, including physiographic, meteorological, geological and land-use variables, were derived and, using three strategies – gamma test (GT), GT plus classification and expert opinion – the best input combination was selected. To select the best technique for regionalization, support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and nonlinear regression (NLR) techniques were applied to predict peak flood discharge for 2-, 5-, 10-, 25-, 50- and 100-year return periods. The GT + ANFIS and GT + SVR models gave better performance than the ANN and NLR models in the RFFA. The results of the input variable selection showed that the GT technique improved the model performance.  相似文献   

16.
A vortex tube silt ejector is a curative hydraulic structure used to remove sediment deposits from canals and is recognized as one of the most efficient substitutes for physically removing canal sediment. The spatially varied flow in the channel and the rotational flow behavior in the tube make the silt removal process complex. It is even harder to accurately predict the silt removal efficiency by traditional models accurately. However, artificial intelligence(AI) and machine learning approaches...  相似文献   

17.
A drought forecasting model is a practical tool for drought-risk management. Drought models are used to forecast drought indices (DIs) that quantify drought by its onset, termination, and subsequent properties such as the severity, duration, and peak intensity in order to monitor and evaluate the impacts of future drought. In this study, a wavelet-based drought model using the extreme learning machine (W-ELM) algorithm where the input data are first screened through the wavelet pre-processing technique for better accuracy is developed to forecast the monthly effective DI (EDI). The EDI is an intensive index that considers water accumulation with a weighting function applied to rainfall data with the passage of time in order to analyze the drought-risk. Determined by the autocorrelation function (ACF) and partial ACFs, the lagged EDI signals for the current and past months are used as significant inputs for 1 month lead-time EDI forecasting. For drought model development, 97 years of data for three hydrological stations (Bathurst Agricultural, Wilsons Promontory and Merredin in Australia) are partitioned in approximately 90:5:5 ratios for training, cross-validation and test purposes, respectively. The discrete wavelet transformation (DWT) is applied to the predictor datasets to decompose inputs into their time–frequency components that capture important information on periodicities. DWT sub-series are used to develop new EDI sub-series as inputs for the W-ELM model. The forecasting capability of W-ELM is benchmarked with ELM, artificial neural network (ANN), least squares support vector regression (LSSVR) and their wavelet-equivalent (W-ANN, W-LSSVR) models. Statistical metrics based on agreement between the forecasted and observed EDI, including the coefficient of determination, Willmott’s index, Nash–Sutcliffe coefficient, percentage peak deviation, root-mean-square error, mean absolute error, and model execution time are used to assess the effectiveness of the models. The results demonstrate enhanced forecast skill of the drought models that use wavelet pre-processing of the predictor dataset. Based on statistical measures, W-ELM outperformed traditional ELM, LSSVR, ANN and their wavelet-equivalent counterparts (W-ANN, W-LSSVR). It is found that the W-ELM model is computationally efficient as shown by a faster running time with the majority of forecasting errors in lower frequency bands. The results demonstrate the usefulness of W-ELM over W-ANN and W-LSSVR models and the benefits of wavelet transformation of input data to improve the performance of drought forecasting models.  相似文献   

18.
Evaporation, as a major component of the hydrologic cycle, plays a key role in water resources development and management in arid and semi-arid climatic regions. Although there are empirical formulas available, their performances are not all satisfactory due to the complicated nature of the evaporation process and the data availability. This paper explores evaporation estimation methods based on artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. It has been found that ANN and ANFIS techniques have much better performances than the empirical formulas (for the test data set, ANN R2 = 0.97, ANFIS R2 = 0.92 and Marciano R2 = 0.54). Between ANN and ANFIS, ANN model is slightly better albeit the difference is small. Although ANN and ANFIS techniques seem to be powerful, their data input selection process is quite complicated. In this research, the Gamma test (GT) has been used to tackle the problem of the best input data combination and how many data points should be used in the model calibration. More studies are needed to gain wider experience about this data selection tool and how it could be used in assessing the validation data.  相似文献   

19.
Prediction of factors affecting water resources systems is important for their design and operation. In hydrology, wavelet analysis (WA) is known as a new method for time series analysis. In this study, WA was combined with an artificial neural network (ANN) for prediction of precipitation at Varayeneh station, western Iran. The results obtained were compared with the adaptive neural fuzzy inference system (ANFIS) and ANN. Moreover, data on relative humidity and temperature were employed in addition to rainfall data to examine their influence on precipitation forecasting. Overall, this study concluded that the hybrid WANN model outperformed the other models in the estimation of maxima and minima, and is the best at forecasting precipitation. Furthermore, training and transfer functions are recommended for similar studies of precipitation forecasting.  相似文献   

20.
ABSTRACT

The potential of the most recent pre-processing tool, namely, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), is examined for providing AI models (artificial neural network, ANN; M5-model tree, M5-MT; and multivariate adaptive regression spline, MARS) with more informative input–output data and, thence, evaluate their forecasting accuracy. A 130-year inflow dataset for Aswan High Dam, Egypt, is considered for training, validating and testing the proposed models to forecast the reservoir inflow up to six months ahead. The results show that, after the pre-processing analysis, there is a significant enhancement in the forecasting accuracy. The MARS model combined with CEEMDAN gave superior performance compared to the other models – CEEMDAN-ANN and CEEMDAN-M5-MT – with an increase in accuracy of, respectively, about 13–25% and 6–20% in terms of the root mean square error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号