首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

2.
Based on the analysis of Levitus data, the climatic states of the warm pool in the Indian Ocean (WPIO) and in the Pacific Ocean (WPPO) are studied. it is found that WPIO has a relatively smaller area, a shallower bottom and a slightly lower seawater temperature than those of WPPO. The horizontal area at different depths, volumes, central positions, and bottom depths of both WPIO and WPPO show quite apparent signals of seasonal variation. The maximum amplitude of WPIO surface area’s seasonal variation is 58% larger over the annual mean value. WPIO’s maximum volume variation amplitude is 66% larger over the annual mean value. The maximum variation amplitudes of the surface area and volume of WPPO are 20.9% and 20.6% larger over the annual mean value respectively. WPIO and WPPO show different temporal and spatial characteristics mainly due to the different wind fields and restriction of ocean basin geometry. For instance, seasonal northern displacement of WPIO is, to some extent, constrained by the basin of the Indian Ocean, while WPPO moves relatively freely in the longitudinal direction. The influence of WPIO and WPPO over the atmospheric motion must be quite different.  相似文献   

3.
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.  相似文献   

4.
The oceanic warm pool (OWP) defined by sea surface temperature (SST) is known as the "heat reservoir" in the ocean. The warmest portion in the ocean mirrors the fact that the wettest region with the largest accumulation of water vapor (WV) in the atmosphere, termed atmospheric wet pool (AWP), should be identified because of the well-known Clausius-Clapeyron relationship between SST and WV. In this study, we used 14-year simultaneous observations of WV and SST from January 1988 to December 2001 to define the AWP and investigate its coupling and co-variations with the OWP. The joint examination of the area variations, centroid locations, and zonal migrations of the AWP and OWP lead to a number of interesting findings. The results hopefully can contribute to our understanding of the air-sea interaction in general and characterization of El Nifio/La Nina events in particular.  相似文献   

5.
The sulfate-reducing bacteria (SRB) community in the deep-sea sediments of the west Pacific Warm Pool (WP) was surveyed by molecular phylogenetic analyses using primers targeting the 16S rRNA gene fragments of SRB. Specific 16S rRNA gene libraries from five sediment layers (1-cm, 3-cm, 6-cm, 10-cm and 12-cm layer) of the 12-cm core of WP-0 were constructed. The clones in the five libraries were differentiated by restriction fragment length polymorphism (RFLP) and representative clones were selected to sequence. It was found that the clones fell into four groups, which were closest related to Desulfotomaculum, Desul- facinum, Desulfomonile and Desulfanuticus. Desulfacinum-like clones were only detected in the upper layers of the sediment core, whereas Desulfomonile-like clones were only present in the deeper layers. Fluorescence in situ hybridization (FISH) was further carried out to visualize and count the SRB and bacteria in the five sediment layers. It was found that SRB constituted only a small proportion of the bacteria community (0.34%-1.95%), it had the highest content in the 3-cm layer (1.95%) and had a depth- related decreasing tendency along the 12- cm core.  相似文献   

6.
Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.  相似文献   

7.
On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distribution,geostrophic flow field,and heat budget are examined.Four water masses are present:the North Pacific Tropical Surface Water,the North Pacific Sub-surface Water,the North Pacific Intermediate Water,and the Antarctic Intermediate Water(AAIW).The previous three corresponded with the North Equatorial Current(NEC),the Kuroshio Current(KC),and the Mindanao Current(MC),respectively.AAIW is the source of the Mindanao Undercurrent.The mass transport of NEC,KC,and MC is 58.7,15,and 27.95Sv,respectively(relative to 1500db).NEC can be balanced by the transport across the whole transect 18°N(31.81 Sv)and 7.5°N(26.11 Sv)but not simply by KC and MC.Direct calculation is used to study the heat flux.In sum,1.45PW heat is transported outwards the observed region,which is much more than that released from the ocean to the air at the surface(0.05PW).The net heat lost decreased the water temperature by 0.75℃each month on average,and the trend agreed well with the SST change.Vertically,the heat transported by the currents is mainly completed in the upper 500 m.  相似文献   

8.
Based on the monthly average SST and 850 hPa monthly average wind data,the seasonal,interannual and long-term variations in the eastern Indian Ocean warm pool(EIWP) and its relationship to the Indian Ocean Dipole(IOD),and its response to the wind over the Indian Ocean are analyzed in this study.The results show that the distribution range,boundary and area of the EIWP exhibited obviously seasonal and interannual variations associated with the ENSO cycles.Further analysis suggests that the EIWP had obvious l...  相似文献   

9.
The eastern edge of the western Pacific warm pool (WPWP) in the upper layer (shallower than 50m) exhibits significant zonal displacements on interannual scale. Employing an intermediate ocean model, the dynamic mechanism for the interannual zonal displacement of the WPWP eastern edge in the upper layer is investigated by diagnosing the dynamic impacts of zonal current anomalies induced by wind, waves (Kelvin and Rossby waves), and their boundary reflections. The interannual zonal displacements of the WPWP eastern edge in the upper layer and the zonal current anomaly in the equatorial Pacific west of 110°W for more than 30 years can be well simulated. The modeling results show that zonal current anomalies in the central and eastern equatorial Pacific are the dominant dynamic mechanism for the zonal displacements of the eastern edge of the upper WPWP warm water. Composite analyses suggest that the zonal current anomalies induced by waves dominate the zonal displacement of the WPWP eastern edge, whereas the role played by zonal wind-driven current anomalies is very small. A sensitivity test proves that the zonal current anomalies associated with reflected waves on the western and eastern Pacific boundaries can act as a restoring force that results in the interannual reciprocating zonal motion of the WPWP eastern edge.  相似文献   

10.
1 INTRODUCTION Marginal seas in the Northwest Pacific includethe Bering Sea, the Okhotsk Sea, the Japan Sea, theEast China Sea, the South China Sea and the Philip-pine Sea, surrounded by adjacent coastal regions,the islands on the continental crust side and theocean trench at oceanic crust side. More than 4000heat flow data have been obtained since the firstmeasurement in the area in 1957 around the Japa-nese Islands (Uyeda and Horai, 1964) and the firstmarine survey in the Be…  相似文献   

11.
The eastern edge of the western Pacific warm pool (WPWP) in the upper layer (shallower than 50m) exhibits significant zonal displacements on interannual scale. Employing an intermediate ocean model, the dynamic mechanism for the interannual zonal displacement of the WPWP eastern edge in the upper layer is investigated by diagnosing the dynamic impacts of zonal current anomalies induced by wind, waves (Kelvin and Rossby waves), and their boundary reflections. The interannual zonal displacements of the WPWP eastern edge in the upper layer and the zonal current anomaly in the equatorial Pacific west of 110°W for more than 30 years can be well simulated. The modeling results show that zonal current anomalies in the central and eastern equatorial Pacific are the dominant dynamic mechanism for the zonal displacements of the eastern edge of the upper WPWP warm water. Composite analyses suggest that the zonal current anomalies induced by waves dominate the zonal displacement of the WPWP eastern edge, whereas the role played by zonal wind-driven current anomalies is very small. A sensitivity test proves that the zonal current anomalies associated with reflected waves on the western and eastern Pacific boundaries can act as a restoring force that results in the interannual reciprocating zonal motion of the WPWP eastern edge.  相似文献   

12.
Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.  相似文献   

13.
This paper describes a new species of Nassarius from the South China Sea,which was recognized when re-sorting the collection of Nassariidae in the Marine Biological Museum,Chinese Academy of Sciences,Qingdao,China.The shells were collected during several investigations,including the National Comprehensive Oceanic Survey in 1958-1959,and the China-Vietnam Co-Investigation on Marine Resource of the Beibu Gulf during 1959-1962.The morphology of the shell and the radula places the new species of Nassarius within the subgenus Zeuxis.It is named Nassarius(Zeuxis) nanhaiensis sp.nov.  相似文献   

14.
In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E.  相似文献   

15.
In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(E1 Nino-Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture (SST) is conspicuous both monthly and armaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and LaNlra. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area.  相似文献   

16.
Events of decadal thermocline variations in the South Pacific Ocean   总被引:1,自引:0,他引:1  
1 INTRODUCTION It has been suggested that interior thermal anomalies that subduct into the subtropics of the North Pacific may propagate to the equatorial region of the Pacific (Russell, 1994; Deser et al., 1996; Gu and Philander, 1997; Huang and Huang an…  相似文献   

17.
Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pa...  相似文献   

18.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Niño-3 region SST anomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Niño-3 region SSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a l°C anomaly in the Niño-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Niño-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Niño-3 region SST increase during an El Niño-Southern Oscillation (ENSO) event.  相似文献   

19.
Observational data obtained during the TOGA-COARE IOP in the “warm pool” area of the Western Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixed layer. The influence of westerly burst and rainfall on SST, salinity and mixed layer depth are discussed. There are two pairs of counteracting processes in the “warm pool” mixed layer: (1) The increase of mixed layer depth caused by local westerly bursts and the decrease of mixed layer depth caused by larger scale easterly relaxation; (2) the vertical mixing by local wind and the strong stratification due to rainfall in the mixed layer. Some possible mechanisms through the interactions between the intraseasonal time scale variations of the oceanic mixed layer and atmospheric low frequency oscillations are revealed. Supported by National Natural Science Foundation of China (49276250) and LASG of Beijing.  相似文献   

20.
A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号