首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of the impact of the 3D variational data assimilation (3DVAR) system within the Weather Research and Forecasting (WRF) model to simulate three heavy rainfall events (25–28 June 2005, 29–31 July 2004, and 7–9 August 2002) over the Indian monsoon region. For each event, two numerical experiments were performed. In the first experiment, namely the control simulation (CNTL), the low-resolution global analyses are used as the initial and boundary conditions of the model. In the second experiment (3DV-ANA), the model integration was carried out by inserting additional observations in the model’s initial conditions using the 3DVAR scheme. The 3DVAR used surface weather stations, buoy, ship, radiosonde/rawinsonde, and satellite (oceanic surface wind, cloud motion wind, and cloud top temperature) observations obtained from the India Meteorological Department (IMD). After the successful inclusion of additional observational data using the 3DVAR data assimilation technique, the resulting reanalysis was able to successfully reproduce the structure of convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC). The location and intensity of the MTC were better simulated in the 3DV-ANA as compared to the CNTL. The results demonstrate that the improved initial conditions of the mesoscale model using 3DVAR enhanced the location and amount of rainfall over the Indian monsoon region. Model verification and statistical skill were assessed with the help of available upper-air sounding data. The objective verification further highlighted the efficiency of the data assimilation system. The improvements in the 3DVAR run are uniformly better as compared to the CNTL run for all the three cases. The mesoscale 3DVAR data assimilation system is not operational in the weather forecasting centers in India and a significant finding in this study is that the assimilation of Indian conventional and non-conventional observation datasets into numerical weather forecast models can help improve the simulation accuracy of meso-convective activities over the Indian monsoon region. Results from the control experiments also highlight that weather and regional climate model simulations with coarse analysis have high uncertainty in simulating heavy rain events over the Indian monsoon region and assimilation approaches, such as the 3DVAR can help reduce this uncertainty.  相似文献   

2.
何静  陈敏  仲跻芹  洪晓媛 《气象学报》2019,77(2):210-232
以业务应用为目标,开展雷达反射率三维拼图观测资料在北方区域数值预报系统中的同化应用研究。采用雷达反射率间接同化方法同化北方雷达反射率拼图观测资料,重点关注其对降水、湿度、温度及风的预报能力影响。首先,基于2017年8月雷达拼图观测资料批量同化和对比试验,对雷达拼图资料同化应用效果进行定量评估,结果表明雷达拼图资料同化虽然加大了地面风场预报误差,但在降水预报和湿度、温度预报等方面有明显的改善作用。其次,选择在业务中预报难度较大的强降水个例开展分析研究,分析表明:(1)同化雷达拼图观测资料有效提高了模式降水预报性能,临近降水发生的循环起报时次预报效果更好;(2)对于短时间多次强降水过程发生的预报,循环同化雷达拼图资料可及时弥补模式中由于前次降水导致的水汽、能量等消耗及热/动力条件削弱,持续支持降水系统发展。最后,通过考察雷达反射率的不同同化方案,发现同化反演水凝物或者估计水汽均能改善模式降水预报性能,但是同化估计水汽对降水预报性能的改善更为明显,联合使用两方案能同时对水凝物分布、热力场等进行调整,可提高模式降水预报性能。   相似文献   

3.
利用国家气象中心中尺度业务数值预报模式GRAPES-MESO v3.0,以2010年6月1~30日为例,开展地面降水率1DVAR(one-dimensional variational assimilation)同化方案在GRAPES-3DVAR(three-dimensional variational assimilation)同化系统中的应用试验研究(ASSI试验),并以未加降水资料同化的试验为对照试验(CNTL试验),以评估全国1h加密雨量资料在模式中同化应用的效果。结果表明:1)在相对湿度背景误差和降水率观测误差范围内,1DVAR同化方案能够对湿度廓线进行有意义的调整,使分析降水向观测降水靠近;ASSI试验对初始温、压、湿、风场的修正主要为正效果;2)对2010年6月17~21日江南、华南连续性降水过程进行了分析,整体而言ASSI试验对逐日及逐时降水强度的预报普遍强于CNTL试验,与实况更加接近;3)ASSI试验对2010年6月1~30日08时起报的0~24 h模式预报的小雨、中雨、大雨、暴雨、大暴雨各个降水量级TS评分及ETS评分相比CNTL试验均有较明显提高,预报偏差也更接近于1;4)ASSI试验较CNTL试验能更好地模拟雨带的分布、雨带演变特征和降水强度的变化;5)对降水所做的典型个例和统计检验分析从不同角度说明了地面降水资料1DVAR同化方案在GRAPES-3DVAR系统中的应用改善了GRAPES-MESO v3.0的降水模拟效果。  相似文献   

4.
In this study, the impact of different land initial conditions on the simulation of thunderstorms and monsoon depressions is investigated using the Weather Research and Forecasting (WRF) model. A control run (CNTL) and a simulation with an improved land state (soil moisture and temperature) using the High Resolution Land Data Assimilation System (HRLDAS, experiment name: EHRLDAS) are compared for three different rainfall cases in order to examine the robustness of the assimilation system. The study comprises two thunderstorm cases (one in the pre-monsoon and one during the monsoon) and one monsoon depression case that occurred during the Interaction of Convective Organisation, Atmosphere, Surface and Sea (INCOMPASS) field campaign of the 2016 Indian monsoon. EHRLDAS is shown to yield improvements in the representation of location-specific rainfall, particularly over land. Further, it is found that surface fluxes as well as convective indices are better captured for the pre-monsoon thunderstorm case in EHRLDAS. By analysing components of the vorticity tendency equation, it is found that the vertical advection term is the major contributor towards the positive vorticity tendency in EHRLDAS compared to CNTL, hence improving localised convection and consequently facilitating rainfall. Significant improvements in the simulation of the pre-monsoon thunderstorm are noted, as seen using Automatic Weather Station (AWS) validation, whereas improvements in the monsoon depression are minimal. Further, it is found that vertical advection (moisture flux convergence) is the major driver modulating the convective circulation in localised thunderstorm (monsoon depression) cases and these dynamics are better represented by EHRLDAS compared to CNTL. These findings underline the importance of accurate and high resolution land-state conditions in model initial conditions for forecasting severe weather systems, particularly the simulation of localised thunderstorms over India.  相似文献   

5.
In this study, efforts are made to improve the simulation of heavy rainfall events over National Capital Region (NCR) Delhi during 2010 summer monsoon, using additional observations from automatic weather stations (AWS). Two case studies have been carried out to simulate the relative humidity, wind speed and precipitation over NCR Delhi in 48-h model integrations; one from 00UTC, August 20, 2010, and the other from 00UTC, September 12, 2010. Several AWS installed over NCR Delhi in the recent past provide valuable surface observations, which are assimilated into state-of-the-art weather research and forecasting (WRF) model using the three-dimensional variational data assimilation (3DVAR). The quality of background error statistics (BES) is a key component in successful 3DVAR data assimilation in a mesoscale model. In this study, the domain-dependent regional background error statistics (RBS) are estimated using National Meteorological Center method in the months of August and September 2010 and then compared with the global background error statistics (GBS) in the WRF model. The model simulations are analyzed and validated against AWS and radiosonde observations to quantify the impact of RBS. The root mean square differences in the spatial distributions of precipitation, relative humidity and wind speed at the surface showed significant differences between both the global and regional BES. Similar differences are also observed in the vertical distributions along the latitudinal cross section at 28.5°N. Model-simulated fields are analyzed at five different surface stations and one upper air station located in NCR Delhi. It is found that in 24-h model simulation, the RBS significantly improves the model simulations in case of precipitation, relative humidity and wind speed as compared to GBS.  相似文献   

6.
The three-/four-dimensional variational data assimilation systems (3/4DVAR) of the Weather Research and Forecasting (WRF) model were explored in the forecasting of two Antarctic synoptic cyclones, which had large influence on the Ross Sea/Ross Ice Shelf region in October 2007. A suite of variational data assimilation experiments, including regular 3DVAR, high-resolution 3DVAR, and 4DVAR experiments, were designed to evaluate their performances in weather analysis and forecasting in Antarctica. In general, both 4DVAR and high-resolution 3DVAR experiments showed better forecasting skill than regular 3DVAR experiments. High-resolution 3DVAR experiments were the most efficient in reducing the analysis errors of surface winds and temperature, and had the best performance during the first 24 h of forecasting. However, during the following forecast period, 4DVAR experiments showed either better or about comparable performance to high-resolution 3DVAR experiments. These results indicate that increasing the spatial resolution during 3DVAR is an economical approach to improving the weather analysis and forecasting over Antarctica. At the same time, the 4DVAR approach had a longer impact on forecasting than the high-resolution 3DVAR approach. Understandably, both of the variational assimilation approaches are promising techniques toward improving the regional analysis and forecasting over Antarctica.  相似文献   

7.
Summary The study provides a concise and synthesized documentation of the current level of skill of the operational NWP model of India Meteorological Department based on daily 24 hours forecast run of the model during two normal monsoon years 2001 and 2003 making detailed inter-comparison with daily rainfall analysis from the use of high dense land rain gauge observations. The study shows that the model, in general, is able to capture three regions of climatologically heavy rainfall domains along Western Ghats, Northeast India and over east central India, over the domain of monsoon trough. However, the accuracy in prediction of location and magnitude of rainfall fluctuates considerably. The inter-comparison reveals that performance of the model rainfall forecast deteriorated in 2003 when rainfall over most parts of the region was significantly under-predicted. These features are also reflected in the error statistics. The study suggests that there is a need to maximize the data ingest in the model with a better data assimilation scheme to improve the rainfall forecast skill.  相似文献   

8.
GNSS反演资料在GRAPES_Meso三维变分中的应用   总被引:2,自引:1,他引:2       下载免费PDF全文
为了进一步提高GRAPES_Meso的分析和预报效果,该文在GRAPES_Meso三维变分同化系统中建立了同化GNSS/RO反演的大气资料的观测算子,实现了对GNSS/RO反演的大气资料的同化应用,并通过2013年7月1个月的同化和预报试验分析了GNSS/RO反演大气资料对GRAPES_Meso模式系统分析和预报的影响。结果表明:增加了GNSS/RO反演大气资料的同化后,GRAPES_Meso位势高度场的分析误差明显减小,平均分析误差减小约8%,预报误差略有减小,平均预报误差减小约1%;湿度场的分析误差和预报误差变化不明显,常规观测资料稀少的青藏高原地区的降水预报技巧有所提高,小雨到大雨的ETS (equitable threat score) 评分提高约0.01,对全国及其他分区的降水预报技巧总体上有正效果。  相似文献   

9.
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Ka...  相似文献   

10.
Summary Using the 60 year period (1931–1990) gridded land surface air temperature anomalies data, the spatial and temporal relationships between Indian summer monsoon rainfall and temperature anomalies were examined. Composite temperature anomalies were prepared in respect of 11 deficient monsoon years and 9 excess monsoon years. Statistical tests were carried out to examine the significance of the composites. In addition, correlation coefficients between the temperature anomalies and Indian summer monsoon rainfall were also calculated to examine the teleconnection patterns.There were statistically significant differences in the composite of temperature anomaly patterns between excess and deficient monsoon years over north Europe, central Asia and north America during January and May, over NW India during May, over central parts of Africa during May and July and over Indian sub-continent and eastern parts of Asia during July. It has been also found that temperature anomalies over NW Europe, central parts of Africa and NW India during January and May were positively correlated with Indian summer monsoon rainfall. Similarly temperature anomalies over central Asia during January and temperature anomalies over central Africa and Indian region during July were negatively correlated. There were secular variations in the strength of relationships between temperature anomalies and Indian summer monsoon rainfall. In general, temperature anomalies over NW Europe and NW India showed stronger correlations during the recent years. It has been also found that during excess (deficient) monsoon years temperature gradient over Eurasian land mass from sub-tropics to higher latitudes was directed equatowards (polewards) indicating strong (weak) zonal flow. This temperature anomaly gradient index was found to be a useful predictor for long range forecasting of Indian summer monsoon rainfall.With 12 Figures  相似文献   

11.
A low pressure system that formed on 21 September 2006 over eastern India/Bay of Bengal intensified into a monsoon depression resulting in copious rainfall over north-eastern and central parts of India. Four numerical experiments are performed to examine the performance of assimilation schemes in simulating this monsoon depression using the Fifth Generation Mesoscale Model (MM5). Forecasts from a base simulation (with no data assimilation), a four-dimensional data assimilation (FDDA) system, a simple surface data assimilation (SDA) system coupled with FDDA, and a flux-adjusting SDA system (FASDAS) coupled with FDDA are compared with each other and with observations. The model is initialized with Global Forecast System (GFS) forecast fields starting from 19 September 2006, with assimilation being done for the first 24 hours using conventional observations, sounding and surface data of temperature and moisture from Advanced TIROS Operational Vertical Sounder satellite and surface wind data over the ocean from QuikSCAT. Forecasts are then made from these assimilated states. In general, results indicate that the FASDAS forecast provides more realistic prognostic fields as compared to the other three forecasts. When compared with other forecasts, results indicate that the FASDAS forecast yielded lower root-mean-square (r.m.s.) errors for the pressure field and improved simulations of surface/near-surface temperature, moisture, sensible and latent heat fluxes, and potential vorticity. Heat and moisture budget analyses to assess the simulation of convection revealed that the two forecasts with the surface data assimilation (SDA and FASDAS) are superior to the base and FDDA forecasts. An important conclusion is that, even though monsoon depressions are large synoptic systems, mesoscale features including rainfall are affected by surface processes. Enhanced representation of land-surface processes provides a significant improvement in the model performance even under active monsoon conditions where the synoptic forcings are expected to be dominant.  相似文献   

12.
目前,北京地区的天气预报系统对局地对流性定量降水预报能力较弱,远不能满足人们生产、生活和防灾、减灾工作的需要。针对北京地区对提高0-12 h短时临近天气,尤其是夏季局地对流性降水预报能力的需求,基于中国气象局北京城市气象研究所变分多普勒雷达分析系统(VDRAS)的雷达热动力反演资料,建立了WRF模式初始化模块,采用四维资料同化(FDDA)方法,将VDRAS系统高时空分辨率三维热动力结构分析场资料同化到WRF模式中,实现了北京地区VDRAS分析场资料在WRF中尺度模式系统中的应用。通过降水个例的高分辨率同化模拟试验分析了雷达热动力反演资料同化对模式预报结果的影响。研究结果表明:雷达热动力反演资料的同化能够提高模式系统对近地面温、湿、风大气要素和降水过程的模拟能力,改善2 m比湿、降水落区、降水量级、降水时间的预报效果,减少降水漏报的现象。温度和比湿的同化比风的同化对模拟降水结果的改善更重要。虽然研究表明雷达热动力反演资料在WRF模式中的同化能够明显改善模式对选取降水个例的模拟效果,但其对模式尤其是数值业务模式系统预报效果的影响需要进一步更全面、更系统的检验,为业务化应用奠定更坚实的基础。   相似文献   

13.
天气预报的业务技术进展   总被引:3,自引:1,他引:3       下载免费PDF全文
该文总结回顾了中央气象台近年来的天气预报业务技术进展。天气预报质量的历史演变显示了预报业务水平的提高, 这种业务能力的提高既反映了预报技术的发展, 也带来了天气预报业务的变化。对业务天气预报中各种预报技术应用进展的分析表明:数值预报在天气预报业务能力提高中发挥着重要的基础性作用; 同时, 基于对不同尺度天气影响系统发展演变过程深入认识的基础上, 天气学的预报方法依然是预报业务中的重要技术方法; 动力诊断预报已成为灾害性天气预报中的重要手段之一, 数值预报产品的解释应用是实现气象要素精细定量预报的技术途径。  相似文献   

14.
As a typical physical retrieval algorithm for retrieving atmospheric parameters, one-dimensional variational(1 DVAR) algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing. Among algorithm parameters affecting the performance of the 1 DVAR algorithm, the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval ...  相似文献   

15.
Regional climate model (RCM) is a valuable scientific tool to address the mechanisms of regional atmospheric systems such as the West African monsoon (WAM). This study aims to improve our understanding of the impact of some physical schemes of RCM on the WAM representation. The weather research and forecasting model has been used by performing six simulations of the 2006 summer WAM season. These simulations use all combinations of three convective parameterization schemes (CPSs) and two planetary boundary layer schemes (PBLSs). By comparing the simulations to a large set of observations and analysis products, we have evaluated the ability of these RCM parameterizations to reproduce different aspects of the regional atmospheric circulation of the WAM. This study focuses in particular on the WAM onset and the rainfall variability simulated over this domain. According to the different parameterizations tested, the PBLSs seem to have the strongest effect on temperature, humidity vertical distribution and rainfall amount. On the other hand, dynamics and precipitation variability are strongly influenced by CPSs. In particular, the Mellor?CYamada?CJanjic PBLS attributes more realistic values of humidity and temperature. Combined with the Kain?CFritsch CPS, the WAM onset is well represented. The different schemes combination tested also reveal the role of different regional climate features on WAM dynamics, namely the low level circulation, the land?Catmosphere interactions and the meridional temperature gradient between the Guinean coast and the Sahel.  相似文献   

16.
The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level(surface-sensitive)channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets.Here, we used an improved land use and leaf area index(LAI) dataset in the WRF-3 DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels(e.g., channel 3),the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation.  相似文献   

17.
Summary The temperature and moisture data from TIROS operational vertical sounder (TOVS) are examined to obtain humidity parameters like, mid and upper tropospheric water vapour, and scale height of water vapour. Their usefulness in characterizing the onset of south-west (SW) monsoon over India is studied. The NOAA satellite data (finished product) with a resolution of 2.5° lat/lon are used to obtain these parameters during and prior to the SW monsoon season over selected regions during 1979 to 1985. The pentad averaged values in the western Indian Ocean showed an increase in scale height of water vapour and mid-tropospheric moisture (700–500 mb) over about 8 to 10 days prior to the onset over Kerala coast. The association of the moisture flux across the Indian Ocean and the rainfall over Kerala coast has also been examined. Results showed that the gradient of middle level moisture is stronger in the case of rainfall deficit years.With 13 Figures  相似文献   

18.
利用新一代中尺度预报模式WRFV3.6及其三维变分同化系统(WRF-3DVAR),对2012年7月21日北京地区的一次暴雨过程进行多普勒天气雷达径向风和反射率的同化试验研究,检验和探讨高时空分辨率多普勒天气雷达资料在改进模式初始场及提高对暴雨过程预报的准确率等方面的应用效果及意义。结果发现雷达资料同化能在初始场中加入反映产生降水的低层风场辐合的动力和锋前暖区充足的水汽条件的物理信息,可以在模式积分开始后改善初始场中水汽和风的分布,较快地模拟出局地对流系统的发生、发展,改善由于中尺度观测资料不足而造成的模式初始场里中尺度信息缺乏的问题。径向速度的同化增加了中尺度信息,对初始流场的调整较为显著,侧重于改进风场。而雷达反射率资料的同化对初始温、湿度场和强回波位置的调整更明显,侧重于改进湿度场。累计降水的预报结果显示,同化径向风资料对雨带的位置、范围有较好的改进,同化雷达反射率资料对暴雨强度的预报有明显的改善。通过降水ETS评分发现,同化常规观测试验相对于控制实验,对于5、15 mm和25 mm降水评分能增加0.1左右,径向风同化试验能增加0.2左右,反射率同化试验能增加0.3左右,而径向风加反射率试验增加的评分介于0.2~0.3。雷达资料对于提高定量降水预报的精确度有着重要作用。  相似文献   

19.
The present study is conducted to verify the short-range forecasts from mesoscale model version5 (MM5)/weather research and forecasting (WRF) model over the Indian region and to examine the impact of assimilation of quick scatterometer (QSCAT) near surface winds, spectral sensor microwave imager (SSM/I) wind speed and total precipitable water (TPW) on the forecasts by these models using their three-dimensional variational (3D-Var) data assimilation scheme for a 1-month period during July 2006. The control (without satellite data assimilation) as well as 3D-Var sensitivity experiments (with assimilating satellite data) using MM5/WRF were made for 48 h starting daily at 0000 UTC July 2006. The control run is analyzed for the intercomparison of MM5/WRF short-range forecasts and is also used as a baseline for assessing the MM5/WRF 3D-Var satellite data sensitivity experiments. As compared to the observation, the MM5 (WRF) control simulations strengthened (weakened) the cross equatorial flow over southern Arabian sea near peninsular India. The forecasts from MM5 and WRF showed a warm and moist bias at lower and upper levels with a cold bias at the middle level, which shows that the convective schemes of these models may be too active during the simulation. The forecast errors in predicted wind, temperature and humidity at different levels are lesser in WRF as compared to MM5, except the temperature prediction at lower level. The rainfall pattern and prediction skill from day 1 and day 2 forecasts by WRF is superior to MM5. The spatial distribution of forecast impact for wind, temperature, and humidity from 1-month assimilation experiments during July 2006 demonstrated that on average, for 24 and 48-h forecasts, the satellite data improved the MM5/WRF initial condition, so that model errors in predicted meteorological fields got reduced. Among the experiments, MM5/WRF wind speed prediction is most benefited from QSCAT surface wind and SSM/I TPW assimilation while temperature and humidity prediction is mostly improved due to latter. The largest improvement in MM5/WRF rainfall prediction is due to the assimilation of SSM/I TPW. The assimilation of SSM/I wind speed alone in MM5/WRF degraded the humidity and rainfall prediction. In summary the assimilation of satellite data showed similar impact on MM5/WRF prediction; largest improvement due to SSM/I TPW and degradation due to SSM/I wind speed.  相似文献   

20.
To improve the accuracy of short-term(0–12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System(HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting(WRF-ARW)model and the Advanced Regional Prediction System(ARPS) three-dimensional variational data assimilation(3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station(AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting(QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6–9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score(FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号