首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Long-term (approximately 80?years) daily climate records at 12 weather stations across the agricultural production region of the Canadian Prairies were assessed to evaluate trends in seasonal heat units and moisture characteristics for corn (Zea mays). Crop water demand (CWD) and crop water deficit were modelled at each station. Growing season accumulation of these as well as corn heat units (CHU) and rainfall were tested for long-term trends using linear regression. Significant positive trends in CHU were present in the southernmost stations while the northern stations displayed no trend or significant negative trends. Growing season precipitation showed a significant increase on average and most stations showed a positive trend but only one station showed a significant positive trend. CWD declined at most stations with significant negative trends at seven stations. Crop water deficient also declined with significant negative trends at six stations. The spatial variation in these results and those reported in other studies in the region underscores the difficulty involved in forecasting future trends in agroclimatic conditions.  相似文献   

2.
Rainfall and rainy days trend in Iran   总被引:3,自引:0,他引:3  
In this study, long-term annual and monthly trends in rainfall amount, number of rainy days and maximum precipitation in 24?h are investigated based on the data collected at 33 synoptic stations in Iran. The statistical significance of trend and climate variability is assessed by the Mann-Kendall test. The Linear trend analysis and the Mann-Kendall test indicate that there are no significant linear trends in monthly rainfall at most of the synoptic stations in Iran. However, the maximum number of stations with negative trends have been observed in April (29 station), and then in May (21 stations) and February (21 stations) and with positive trends in December (26 stations) and July (24 stations). The significant linear trends, with a significant level of 0.05, in annual rainfall have been noticed only at five stations. The monthly number of rainy days does not show any significant linear trend for most areas in Iran. The maximum number of stations with monthly negative trends in rainy days has also been observed in April with the minimum in December. In April, out of 24 stations with negative trends, 12 stations have a significant negative trend. Contrary to that, in October there is no significant linear trend. Most stations have positive trends in annual number of rainy days. Also, the monthly maximum precipitation in 24?h does not show any significant linear trend for most areas in Iran. The maximum number of stations with monthly negative trends in maximum precipitation has also been observed in February with the minimum in December. In spite of that, there are almost no significant precipitation variations in Iran during the last 50-odd years, the tendency of decreasing rainfall amount in April and increasing rainfall amount in December and July could indicate an eventual climate change in this area in the future.  相似文献   

3.
Iranian rainfall series analysis by means of nonparametric tests   总被引:1,自引:0,他引:1  
The study of the trends and fluctuations in rainfall has received a great deal of attention, since changes in rainfall patterns may lead to floods or droughts. The objective of this study was to analyze the annual, seasonal, and monthly rainfall time series at seven rain gauge stations in the west of Iran for a 40-year period (from October 1969 to September 2009). The homogeneity of the rainfall data sets at the rain gauge stations was checked by using the cumulative deviations test. Three nonparametric tests, namely Kendall, Spearman, and Mann–Kendall, at the 95 % confidence level were used for the trend analysis and the Theil–Sen estimator was applied for determining the magnitudes of the trends. According to the homogeneity analysis, all of the rainfall series except the September series at Vasaj station were found to be homogeneous. The obtained results showed an insignificant trend in the annual and seasonal rainfall series at the majority of the considered stations. Moreover, only three significant trends were observed at the February rainfall of Aghajanbolaghi station, the November series of Vasaj station, and the March rainfall series of Khomigan station. The findings of this study on the temporal trends of rainfall can be implemented to improve the water resources strategies in the study region.  相似文献   

4.
Rainfall erosivity, which shows a potential risk of soil loss caused by water erosion, is an important factor in soil erosion process. In consideration of the critical condition of soil erosion induced by rainfall in Guangdong Province of southern China, this study analyzed the spatial and temporal variations in rainfall erosivity based on daily rainfall data observed at 25 meteorological stations during the period of 1960–2011. The methods of global spatial autocorrelation, kriging interpolation, Mann–Kendall test, and continuous wavelet transform were used. Results revealed that the annual rainfall erosivity in Guangdong Province, which spatially varied with the maximum level observed in June, was classified as high erosivity with two peaks that occur in spring and summer. In the direction of south–north, mean annual rainfall erosivity, which showed significant relationships with mean annual rainfall and latitude, gradually decreased with the high values mainly distributed in the coastal area and the low values mainly occurring in the lowlands of northwestern Guangdong. Meanwhile, a significant positive spatial autocorrelation which implied a clustered pattern was observed for annual rainfall erosivity. The spatial distribution of seasonal rainfall erosivity exhibited clustering tendencies, except spring erosivity with Moran’s I and Z values of 0.1 and 1.04, respectively. The spatial distribution of monthly rainfall erosivity presented clustered patterns in January–March and July–October as well as random patterns in the remaining months. The temporal trend of mean rainfall erosivity in Guangdong Province showed no statistically significant trend at the annual, seasonal, and monthly scales. However, at each station, 1 out of 25 stations exhibited a statistically significant trend at the annual scale; 4 stations located around the Pearl River Delta presented significant trends in summer at the seasonal scale; significant trends were observed in March (increasing trends at 3 stations), June (increasing trends at 4 stations located in the Beijiang River Basin), and October (decreasing trends at 4 stations) at the monthly scale. In accordance with the mean annual rainfall over Guangdong Province, the mean annual rainfall erosivity showed two significant periodicities of 3–6 and 10–12 years at a confidence level of 95 %. In conclusion, the results of this study provide insights into the spatiotemporal variation in rainfall erosivity in Guangdong Province and support for agrolandscape planning and water and soil conservation efforts in this region.  相似文献   

5.
本文以华北五省为研究区,基于1960—2014年小时降水数据建立1、2、3、6、12和24 h极端降水序列,对比分析稳态和非稳态假设下极端降水重现期估计的差异。研究表明:1960―2014年华北不同时间极端降水的变化趋势略有不同,时间越短呈上升趋势的站点越多,1~3 h的极端降水呈上升趋势的站点较多,稳态和非稳态假设下的20~100 a一遇重现期平均差异较大,其中,1 h极端降水的显著上升站点中,二者的平均相对误差达30%~43%;而6~24 h极端降水中,呈下降趋势的站点增多,其中,24 h极端降水显著下降站点中,二者的平均相对误差达-43%~-32%;无显著趋势站点,二者的平均相对误差大部分介于-10%~10%。随着重现期增大,二者差异的不确定性区间增大,不同变化趋势站点表现一致。研究发现,华北地区短历时极端降水强度增加,稳态假设下极端降水的重现期会严重低估。因此,选用非稳态假设估计极端降水的重现期,将降低极端降水的灾害风险。  相似文献   

6.
为了研究青藏高原低涡降水长期特征,利用1979~2015年高原低涡数据集、依照高原低涡降水范围,匹配高原各站逐日降水信息,对高原低涡降水特征进行统计分析。结果表明,青藏高原低涡降水量呈上升趋势,大值中心位于西藏那曲地区,呈向东南凸出递减分布,并以夏季低涡降水为主,全年和夏季高原低涡降水量与总降水量均存在明显的正相关关系。安多站高原低涡降水呈下降趋势,但对年降水的平均贡献率高达三成;那曲站与托托河站高原低涡降水在总体上却呈上升趋势,递增率分别为0.2 mm/a和0.7 mm/a,其中那曲低涡频数与低涡降水强度的正相关系数达0.66,而托托河低涡降水占总降水的百分比却呈下降趋势。高原低涡日降水量等级主要以小雨为主,但中雨却是低涡降水量的主要贡献者。趋势分析发现高原低涡降水递增中心位于青海北部,递增率达到0.9 mm/a,次中心在西藏西南部雅鲁藏布江沿线地区;同时,高原低涡引发小雨降水基本呈全区一致增加趋势,中心位于西藏东北部和青海西南部地区;中雨降水上升趋势主要集中在西藏西南部、青海地区以及四川西部,其中青海南部存在较为明显上升中心区,下降趋势主要分布在西藏北部和东部。  相似文献   

7.
Summary In this paper, the annual extreme rainfall series in the time scale of 1 to 3 days duration at 316 stations, well distributed over the Indian region, covering 80-years of rainfall data from 1901 to 1980 were analysed for trend and persistence using standard statistical tests. It has been found that the annual extreme rainfall records of most stations are free from trend and persistence. However, the extreme rainfall series at stations over the west coast north of 12°N and at some stations to the east of the Western Ghats over the central parts of the Peninsula showed a significant increasing trend at 95% level of confidence. Stations over the southern Peninsula and over the lower Ganga valley have been found to exhibit a decreasing trend at the same level of significance. The data series of the stations which showed trends were subjected to a 10-year moving average and the resulting smoothed series have been discussed. It may be said that this increasing or decreasing trend in the annual extreme rainfall events at a few places will have tremendous implications in the hydrologic studies and dam design projects.With 9 Figures  相似文献   

8.
Short-duration (5 minutes to 24 hours) rainfall extremes are important for a number of purposes, including engineering infrastructure design, because they represent the different meteorological scales of extreme rainfall events. Both single location and regional analyses of the changes in short-duration extreme rainfall amounts across Canada, as observed by tipping bucket rain gauges from 1965 to 2005, are presented. The single station analysis shows a general lack of a detectable trend signal, at the 5% significance level, because of the large variability and the relatively short period of record of the extreme short-duration rainfall amounts. The single station 30-minute to 24-hour durations show that, on average, 4% of the total number of stations have statistically significant increasing amounts of rainfall, whereas 1.6% of the cases have significantly decreasing amounts. However, regional spatial patterns are apparent in the single station trend results. Thus, for the same durations regional trends are presented by grouping the single station trend statistics across Canada. This regional trend analysis shows that at least two-thirds of the regions across Canada have increasing trends in extreme rainfall amounts, with up to 33% being significant (depending on location and duration). Both the southwest and the east (Newfoundland) coastal regions generally show significant increasing regional trends for 1- and 2-hour extreme rainfall durations. For the shortest durations of 5–15 minutes, the general overall regional trends in the extreme amounts are more variable, with increasing and decreasing trends occurring with similar frequency; however, there is no evidence of statistically significant decreasing regional trends in extreme rainfall amounts. The decreasing regional trends for the 5- to 15-minute duration amounts tend to be located in the St. Lawrence region of southern Quebec and in the Atlantic provinces. Additional analysis using criteria specified for traditional water management practice (e.g., Intensity-Duration-Frequency (IDF)) shows that fewer than 5.6% and 3.4% of the stations have significant increasing and decreasing trends, respectively, in extreme annual maximum single location observation amounts. This indicates that at most locations across Canada the traditional single station IDF assumption that historical extreme rainfall observations are stationary (in terms of the mean) over the period of record for an individual station is not violated. However, the trend information is still useful complementary information that can be considered for water management purposes, especially in terms of regional analysis.  相似文献   

9.
长江流域近40年强降水的变化趋势   总被引:30,自引:8,他引:30  
杨宏青  陈正洪  石燕  任国玉 《气象》2005,31(3):66-68
利用长江流域109个气象站1960-2001年的逐日降水资料,采用泰森多边形方法计算整个长江流域的面雨量,研究了长江流域面雨量的变化趋势。结果表明:长江流域年面雨量呈增加趋势,但不显著。从长江流域各站暴雨日数和暴雨量趋势变化的空间分布来看,长江流域年、夏季6~8月的暴雨日数和暴雨量表现为较大范围的增加趋势,但通过显著性检验的站并不多,显著增加的中心在江西省。  相似文献   

10.
Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955–2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann–Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.  相似文献   

11.
Accurately predicting precipitation trends is vital in the economic development of a country. Ground observed data from the Nigeria Meteorological Agency (NIMET) was analyzed to study the long-term spatio-temporal trends of rainfall on annual and seasonal scales for 23 stations in Nigeria during a 40-year period spanning from 1974 to 2013. After testing the presence of autocorrelation, Mann–Kendall (modified Mann–Kendall) test was applied to non-autocorrelated (autocorrelated) series to detect the trends in rainfall data. Theil and Sen’s slope estimator test was used to find the magnitude of change over a time period. Pettitt’s test, Standard Normal Homogeneity Test, and Buishand’s test were further used to test the homogeneity of the rainfall series. The results show an increasing trend in annual rainfall; however, only nine stations have a significant increase during the period of study. On the seasonal time scale, a significant increasing trend was observed in the pre- and post-monsoon seasons, while only nine stations show a significant increasing trend in monsoon rainfall and a significant decreasing trend in the winter rainfall over the last 40 years. During the study period, 15.4 and 13.90 % increase were estimated for annual and monsoonal rainfall, respectively. Furthermore, seven stations exhibit changes in mean rainfall while majority of the stations considered (Eighteen stations) exhibit homogeneous trends in annual and seasonal rainfall over the country. The performance of the different tests used in this study was consistent at the verified significance level.  相似文献   

12.
Summary Monthly and annual climatic variabilities of precipitation were analyzed from a 60 years record of rainfall data at 10 measuring stations in the humid region of Argentina.Different statistical techniques were used to analyze the regional homogeneity of precipitation fields. Special structures and monthly trends were studied. Simple correlations of yearly precipitation at different locations were computed. Exponential functions relating cross-correlations and distances were determined through regression analysis.Monthly and annual rainfall show no evident signs of trends; aleatory processes are predominant in the whole region; and, correlation functions are independent of the direction of the vector connecting the stations.With 3 Figures  相似文献   

13.
Based on daily precipitation records at 75 meteorological stations in Hunan Province, central south China, the spatial and temporal variability of precipitation indices is analyzed during 1961–2010. For precipitation extremes, most of precipitation indices suggest that both the amount and the intensity of extreme precipitation are increasing, especially the mean precipitation amount on a wet day, showing a significant positive trend. Meanwhile, both of the monthly rainfall heterogeneity and the contribution of the days with the greatest rainfall show an upward trend. When it comes to rainfall erosivity, most of this province is characterized by high values of annual rainfall erosivity. Although the directions of trends in annual rainfall erosivity at most stations are upward, only 6 of the 75 stations have significant trends. Furthermore, the spatial and temporal variation of dryness/wetness has been assessed by the standardized precipitation index (SPI). The principal component analysis (PCA) was applied to the SPI series computed on 24-month time scales. The results demonstrated a noticeable spatial variability with three subregions characterized by different trends: a remarkable wet tendency prevails in the central and southern areas, while the northern areas are dominated by a remarkable dry tendency.  相似文献   

14.
Daily precipitation records of 147 meteorological stations over the Yangtze River Basin have permitted a detailed analysis of the spatio-temporal distribution of wet spells during the period 1961–2003 by distinguishing average daily amount thresholds of 90th and 95th percentiles. The analysis are based on several time series, namely the number of the days in wet spells, the longest wet spell and the precipitation amount in wet spells. Time series trends analyses are compiled for each station by means of the Mann-Kendall test, for four sub-regions. The results show that the annual precipitation in wet spells is higher in the southeast area and the eastern Tibetan Plateau than in the other parts. The longest wet spells are found in the eastern Tibetan Plateau for both the thresholds. The indices in wet spells for most stations have no significant trends. In contrast, only some stations in eastern Tibetan Plateau and the lower Yangtze River Basin increase significantly, while some in the middle reaches show significant decreasing trends. The regional trends analysis presents a noticeable downward trend in the middle Yangtze River Basin and upward trends in the eastern Tibetan Plateau for both 90th and 95th percentiles, however, the upward trend in the lower Yangtze River Basin and downward trends in the upper Jinshajiang River Basin are not significant.  相似文献   

15.
Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958–2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends (P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.  相似文献   

16.
Summary  Reports of changes in the seasonal and annual rainfall in Nigeria suggests that a more detailed analyses of the geographic extent of these changes and of their impact on agriculture could be of value. Variation in the growing season (April to September) rainfall from stations across Nigeria was analysed over the 30-yr period, 1960–90. Regression analyses were used to examine long-term trends. Principal component and cluster analyses were used to group stations with similar trends in standardised seasonal rainfall. Mean accumulated standardised seasonal rainfall were used to examine short- and medium-term trends for each of the groups identified. Significant (P ≤ 0.05) decreases in rainy season rainfall were found at 8 stations mostly in the Guinea and arid/semi-arid savannas of northern Nigeria, whereas no station showed significant increases. Examination of the monthly (April through September) rainfall showed that only three – Kano, Sokoto and Potiskum in the arid/semi-arid savanna – of the twenty-three stations used in the analysis had declining rainfall trends for each of the months April to September and subsequently declining seasonal rainfall trends. However, 12 to 15 stations had consistently declining rainfall trends in atleast some but not all the growing season months. However, a similar pattern was not the case in terms of increasing rainfall trends, where only one to three stations had consistently increasing rainfall trends in some but not all of the months from April to September. Stations that showed increasing rainfall trends were in the southern parts of Nigeria. Six groups with similar patterns in standardised seasonal rainfall were identified by Principal Component and Cluster analyses. For most of the groups, the period from 1967 to 1973 was that of consistently below average seasonal rainfall. However, the timing and extent of the decline varied with location. Common to stations in four of the six groups was a negative trend in seasonal rainfall for the period considered. The geographic variation in seasonal rainfall trends has tremendous agricultural significance since there are indications that the reliability of the season is decreasing from the humid forest zone with positive seasonal trends to the arid/semi-arid savanna with significant negative seasonal trends. Received June 24, 1998 Revised December 18, 1998  相似文献   

17.
江西贵溪市近50年气候特征分析   总被引:4,自引:2,他引:2  
利用1953—2002年贵溪市国家一级站的气象资料,分析了近50 a贵溪市气温、降水、日照的变化特征。分析结果表明,贵溪市年、冬季气温呈上升趋势,而夏季气温呈下降趋势,20世纪90年代冬季增温最为明显;年降水总体呈略上升趋势,90年代降水量异常偏多;年日照时数总体呈下降趋势。分析结果还表明,贵溪市气候正在趋向变暖,特别是近10 a来气温升高明显。  相似文献   

18.
The interpretations of trend behaviour for dry and wet events are analysed in order to verify the dryness and wetness episodes. The fitting distribution of rainfall is computed to classify the dry and wet events by applying the standardised precipitation index (SPI). The rainfall amount for each station is categorised into seven categories, namely extremely wet, severely wet, moderately wet, near normal, moderately dry, severely dry and extremely dry. The computation of the SPI is based on the monsoon periods, which include the northeast monsoon, southwest monsoon and inter-monsoon. The trends of the dry and wet periods were then detected using the Mann–Kendall trend test and the results indicate that the major parts of Peninsular Malaysia are characterised by increasing droughts rather than wet events. The annual trends of drought and wet events of the randomly selected stations from each region also yield similar results. Hence, the northwest and southwest regions are predicted to have a higher probability of drought occurrence during a dry event and not much rain during the wet event. The east and west regions, on the other hand, are going through a significant upward trend that implies lower rainfall during the drought episodes and heavy rainfall during the wet events.  相似文献   

19.
《大气与海洋》2013,51(3):153-162
Abstract

Winter rainfall is a non‐negligible issue for urban drainage in Canada as it can generate significant flooding, especially when it occurs at the same time as high air temperature and in the presence of an appreciable snow cover. According to climate change scenarios, it is expected that the occurrence of these events will increase in a future climate. The purpose of this paper is to perform a trend analysis on six indices related to winter rainfall (January–February) at 60 weather stations located in southern Québec and New Brunswick (Canada) in order to detect possible trends in the frequency or intensity of winter rainfall events during the twentieth century. Datasets were provided by Environment Canada and come from the Canadian Daily Rehabilitated Precipitation Database. The bootstrap‐based Mann‐Kendall test is used to detect possible non‐stationarities in the dataset, while Sen's slope estimator is used to quantify the magnitude of the slope. Results show that 19 stations out of 60 present a significant trend (18 of them being positive) at a 5% level for winter (January–February) total rainfall. In most cases where a trend was detected for winter rainfall there was also an increase in the number of days with rainfall (42% of the stations). These results suggest that globally, for the region under study, rainfall during January and February was more likely to occur, often resulting in a significant increase in the total rainfall during these months. Increasing trends in maximum daily rainfall during January and February were also observed for 9 stations (15% of the stations). The spatial distribution of stations where significant trends were detected is consistent with the hypothesis that trends in winter rainfall are more likely to be observed for stations located in the southern part of the region under study.  相似文献   

20.
Spatial and temporal changes in daily temperature and rainfall indices are analyzed for the source region of Yellow River. Three periods are examined: 1960–1990, 1960–2000 and 1960–2006. Significant warming trends have been observed for the whole study region over all the three periods, particularly over the period 1960–2006. This warming is mainly attributed to a significant increase in the minimum temperature, and characterized by pronounced changes in the low temperature events composing a significant increase in the magnitude and a significant decrease in the frequency. In contrast to the temperature indices, no significant changes have been observed in the rainfall indices at the majority of stations. However, the rainfall shows noticeable increasing trends during winter and spring from a basin-wide point of view. Conversely, the frequency and contribution of moderately heavy rainfall events to total rainfall show a significant decreasing trend in summer. To conclude, this study shows that over the past 40–45 years the source region of the Yellow River has become warmer and experienced some seasonally varying changes in rainfall, which also supports an emerging global picture of warming and the prevailing positive trends in winter rainfall extremes over the mid-latitudinal land areas of the Northern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号