共查询到20条相似文献,搜索用时 37 毫秒
1.
The appearence of geostatistics and geographical information systems has made it possible to analyze complex spatial patterns of meteorological elements over large areas in the applied climatology. The objective of this study is to use geostatistics to characterize the spatial structure and map the spatial variation of average values of precipitation for a 30-year period in Serbia. New, recently introduced, geostatistical algorithms facilitate utilization of auxiliary variables especially remote sensing data or freely available global datasets. The data from Advanced Spaceborn Thermal Emission and Reflection Radiometer global digital elevation model are incorporated as ancillary variables into spatial prediction of average annual precipitation using geostatistical method known as regression kriging. The R 2 value of 0.842 proves high performance result of the prediction of the proposed method. 相似文献
2.
This study shows the results from a regional climate simulation of the present-day climate, corresponding to the period 1961–1970 over South America, using the regional Eta Model nested within the HadAM3P model from the UK Hadley Centre. The simulation analysis is focused on assessing the capability of the nested regional model in representing spatial patterns of seasonal mean climate and the annual cycle of precipitation and temperature. The goals of this 10-year run for South America are to verify if the Eta Model can be used in climate-change scenarios and to verify if this model has the ability to generate added value for the South American continent. The Eta Model was chosen because there are few investigations using the Eta Model for long integrations over South America and because the vertical coordinate system used in this model is recommended for use over South America due to the presence of the Andes range. In the present 10-year simulation, the regional model reproduced many of the South American mesoscale climate features and together added new value to the driver model. Value was also added to the driver model by reducing seasonal biases in austral winter relative to austral summer. The regional model also exhibits better performance in the representation of low-level circulation, such as the topographically induced northwesterly flux. 相似文献
3.
This study investigates the climatological aspects and temporal characteristics of wintertime Ural-Siberian blocking (USB, centered over 30°–100°E), for the period 1980/1981–2009/2010. Sixty-eight events are identified and their physical structure is diagnosed using thermodynamic and geostrophic vorticity tendency equations. In climatology, horizontal advections play a fundamental role in constructing a USB event, in which the anticyclonic center is a warm core in the troposphere and a cold core in the lower stratosphere. The decay of the thermal structure is related to diabatic cooling along the vertical structure and warm advection in the lower stratosphere. Meanwhile, the collapse of the height structure is caused primarily by cyclonic vorticity advection. A strong interrelationship exists between the intensity and extension of USB events. The temporal characteristics of USB events are analyzed by examining strong and weak events, which are of high and low intensity. The strong events are probably preceded by an open ridge over Europe and a cyclogenesis over the Mediterranean Sea, and their formation is followed by the stronger amplification of a Rossby wave packet across Eurasia. On the other hand, the weak events are likely to be triggered by surface cold anomalies over Siberia. Overall, the evolution of a USB event forms a dynamic linkage with the Siberian high, in which the decay stage of the USB event is accompanied by a southeastward migration of the Siberian high and a subsequent cold air outbreak in East Asia. These results advance our understanding of USB and its relationship with East Asian winter monsoon activities. 相似文献
4.
用我国西北五省(区)89个测站1961—1990年月降水量资料,通过EOF分解等方法,将该地区降水按年际变化分为6个区:陕西区、青藏高原东部边缘区、青海高原区、河西走廊区、南疆区和北疆区,与实况较吻合;分析了月降水量年际变化特征。 相似文献
5.
Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961–2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen’s estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between −5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between −8 and +8 mm/decade. February precipitation trends generally ranged from −3 to +3 mm/decade. 相似文献
7.
The short-term rainfall climatology regime over Saudi Arabia is obtained from the Tropical Rainfall Measuring Mission (TRMM) data for the period 1998–2009. The TRMM rainfall amounts are calibrated with respect to the rain-gauge data recorded at 29 stations across the country. Day-to-day rainfall comparisons show that the TRMM rainfall trends are very similar to the observed data trends, even if a general overestimation in the satellite products must be highlighted. Besides, especially during the wet season, some of the TRMM algorithm runs tend to underestimate the retrieved rainfalls. The TRMM rainfall data also closely follow the observed annual cycle on a monthly scale. The correlation coefficient for rainfall between the TRMM and the rain-gauge data is about 0.90, with a 99% level of significance on the monthly scale.The spatio-temporal distributions of rainfall over Saudi Arabia are analyzed. Besides the four conventional seasons, this analysis consider the wet (November–April) and dry (June–September) seasons, based on the rainfall amounts recorded. Spring is the highest and winter is the second highest rainfall-occurring season, resulting in large amounts of rainfall during the wet season over most of the country. Regional variations in the rainfall climatology over Saudi Arabia are studied through defining four regions. The false alarm ratio, probability of detection, threat score, and skill score are calculated to evaluate the TRMM performance. The country's average annual rainfall measured by the TRMM is 89.42 mm, whereas the observed data is 82.29 mm. Thus, the rainfall in Saudi Arabia is suggested as being the TRMM value multiplied by 0.93 plus 0.04. After this calibration, the TRMM-measured rainfall is almost 100% of the observed data, thereby confirming that TRMM data may be used in a variety of water-related applications in Saudi Arabia. 相似文献
8.
The air–sea fluxes of momentum, heat, freshwater and their components have been computed globally from 1948 at frequencies ranging from 6-hourly to monthly. All fluxes are computed over the 23 years from 1984 to 2006, but radiation prior to 1984 and precipitation before 1979 are given only as climatological mean annual cycles. The input data are based on NCEP reanalysis only for the near surface vector wind, temperature, specific humidity and density, and on a variety of satellite based radiation, sea surface temperature, sea-ice concentration and precipitation products. Some of these data are adjusted to agree in the mean with a variety of more reliable satellite and in situ measurements, that themselves are either too short a duration, or too regional in coverage. The major adjustments are a general increase in wind speed, decrease in humidity and reduction in tropical solar radiation. The climatological global mean air–sea heat and freshwater fluxes (1984–2006) then become 2 W/m 2 and ?0.1 mg/m 2 per second, respectively, down from 30 W/m 2 and 3.4 mg/m 2 per second for the unaltered data. However, decadal means vary from 7.3 W/m 2 (1977–1986) to ?0.3 W/m 2 (1997–2006). The spatial distributions of climatological fluxes display all the expected features. A comparison of zonally averaged wind stress components across ocean sub-basins reveals large differences between available products due both to winds and to the stress calculation. Regional comparisons of the heat and freshwater fluxes reveal an alarming range among alternatives; typically 40 W/m 2 and 10 mg/m 2 per second, respectively. The implied ocean heat transports are within the uncertainty of estimates from ocean observations in both the Atlantic and Indo-Pacific basins. They show about 2.4 PW of tropical heating, of which 80% is transported to the north, mostly in the Atlantic. There is similar good agreement in freshwater transport at many latitudes in both basins, but neither in the South Atlantic, nor at 35°N. 相似文献
10.
Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe. 相似文献
13.
Simulations of the present-day temperature climate in Europe obtained with the dynamic regional climate model HadRM3P from the Hadley Centre are evaluated. Observed daily temperature maxima ( T x) and minima ( Tn) for the 1961–1990 period at 185 stations are compared with their nearest corresponding HadRM3P grid-box data. The model generally performs well over the UK and elsewhere between latitudes 50 and 55°N, with biases mostly within ±0.5 K. In other areas coherent regions with seasonal biases up to more than ±5 K exist. In some areas, biases in climatological averages are associated with even larger errors (up to more than ±15 K) in the upper/lower extreme temperature range. Both areas with systematically overestimated and underestimated intra-seasonal daily temperature variances exist, but overestimation dominates. Too hot summer T x south of about 45°N are associated with drying soils in the model. This problem may occur further north in future integrations with a greenhouse-gas induced warming. Given the existence of errors in the simulations of the present-day climate, we recommend that results from future scenario integrations are treated with care. 相似文献
15.
HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices, from January 1973 to December 2022. Data quality, including spatial and temporal stability, is a key focus. The hourly data are quality controlled. Homogeneity is assessed on monthly means and used to score each gridbox according to its homogeneity rather than to apply adjustments. This enables user-specific screening for temporal stability and avoids errors f... 相似文献
16.
Theoretical and Applied Climatology - Based on the precipitation records of 2474 meteorological stations, this study investigated precipitation characteristics and trends in China from 1961 to... 相似文献
17.
We present an analysis of a multidecadal simulation of present-day climate (1961–1990) over Europe with the regional climate model RegCM nested within the global atmospheric model HadAMH. Climatic means, interannual variability and trends are examined, with focus on surface air temperature and precipitation. The RegCM driven by HadAMH fields is able to reproduce the basic features of the observed mean surface climate over Europe, its seasonal evolution and the regional detail due to topographic forcing. Surface air temperature biases are mostly less than 1–2 °C and precipitation biases mostly within 10–20%. The RegCM has more intense vertical transport of temperature and water vapor than HadAMH, which results in lower surface air temperatures and greater precipitation than found in the HadAMH simulation. In some cases this is in the direction of greater agreement with observations, while in others it is in the opposite direction. The simulation shows a tendency to overestimate interannual variability of temperature and precipitation compared to observations, particularly during summer and over the Mediterranean regions. It is shown that in DJF, MAM and SON the RegCM interannual variability is primarily determined by the boundary forcing from HadAMH, while in JJA the internal model physics and resolution effects dominate over many subregions of the domain, and the RegCM has higher interannual variability than HadAMH. The precipitation trends simulated by the nested modeling system for the period 1961–1990 capture some features of the observed trends, in particular the cold season drying over the Mediterranean regions. Ensembles of simulations are, however, needed for a more robust assessment of the models capability to simulate climatic trends. Overall, this simulation is of good quality compared with previous nested RegCM experiments and will constitute the basis for the generation of climate change scenarios over the European region to be reported in future work. 相似文献
19.
Monthly observed wind speed data at 597 weather stations and NCEP wind speed data at 10?m above surface were used to explore the temporal variations of the wind speed for 1961?C2007 in China. The results indicate that the temporal variation of annual wind speed in China has experienced four phases: two relatively steady periods from 1961 to 1968 and 1969 to 1974 with a sharp step change in 1969, a statistically significant decline stage from 1974 to 1990s, and another relatively steady period from 1990s to 2007. Except for the sharp step in 1969 being caused by the changes of observation instrument, other breakpoints correspond well with the positive and negative phases of the interdecadal Pacific oscillation. In addition, four different temporal variation patterns of annual wind speed in China have been identified by using cluster analysis and their spatial distributions were also explored. 相似文献
20.
A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades. 相似文献
|