首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981–2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land–ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.  相似文献   

2.
Observations from research ships which took part in the Indo-Soviet Monsoon Experiment of 1977 (MONSOON 77) and the International Monsoon Experiments (MONEX 79) over the central Arabian Sea and the north central Bay of Bengal were analyzed to study the mean wind and temperature structure of the monsoon boundary layer during active and break conditions. Mean profiles of wind speed and direction along with virtual potential temperature obtained by averaging data from several research ships during 1977 and 1979 indicate that onset conditions were associated with substantial increases in wind speed over the Arabian Sea and a shift to strong southwest flow. Monsoon onset was also characterized by near-neutral to slightly unstable temperature profiles in the lowest kilometer. Break conditions in 1977 in which the monsoon trough moved northward and substantial (5 mb) pressure rises were noted over the Arabian Sea show wind speeds typically decreasing from approximately 18 m s–1 during active conditions to roughly 8 m s –1. Temperature profiles during break conditions are similar to those observed in pre-monsoon conditions in that the boundary layer is observed to be generally much more stable up to 900 mb. Above 900 mb, profiles of virtual potential temperature show little variation.Analysis of latent and sensible heat fluxes during June 1977 calculated by the bulk aerodynamic method indicates values of latent heat flux during active conditions to be roughly two to three times larger than those during break conditions. Sensible heat flux shows an increase from approximately 20 to 80 W m –1 during the onset of the monsoon. Surface fluxes of water vapor indicate the importance of water vapor transport over the ship observation region in the central Arabian Sea during active conditions. Onset of the monsoon over the Arabian Sea is accompanied by an increase in the surface moisture flux by a factor of about two. Time histories of precipitable water show decreases of approximately 15% from active to break periods.  相似文献   

3.
Inter-annual variability in the formation of the mini warm pool [sea-surface temperature (SST)>30°C] over the south eastern Arabian Sea (SEAS) and its role in the formation of the monsoon onset vortex (MOV) has been examined using two independent SST data sets. The role of SST, convection, integrated columnar water vapour and the low-level jet in the setting up of the monsoon onset over Kerala (MOK) is examined. It is found that the MOV which forms over the SEAS region upsets the delicate balance between convection, buildup of moisture and strengthening and deepening of the westerlies over the SEAS that is needed for the setting up of the MOK. Thus, the formation over the SEAS of an MOV is not necessarily conducive for MOK. Furthermore, it is shown that a mini warm pool over the southeastern Arabian Sea is not a sufficient condition for the formation of an MOV because such a warm pool is present over this region during most of the years, but an MOV does not necessarily form over there.  相似文献   

4.
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coefficient for the different seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coefficient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (-0.2 m s^-1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s^-1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s^-1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5×10^-7 N m^-3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coefficient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was confirmed via wavelet analysis. In the case of the drag coefficient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coefficient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.  相似文献   

5.
The information acquired from Argo floats such as temperature and salinity profiles is used to study water mass properties in the Arabian Sea from 2002 to 2004. An examination of water mass structure at different locations reveals the presence of high salinity water of marginal seas in the Arabian Sea. During the southwest monsoon season, the impact of the early onset of southwesterlies is noticed in the upper ocean temperature and salinity structure over the Western Arabian Sea (WAS) during 2002. Surface density variations are found to be more during the southwest monsoon season due to strong wind forcing. Argo temperature and salinity profiles showed that the winter cooling and the formation of Arabian Sea High Salinity Water (ASHSW) over the Northern Arabian Sea (NAS) began during the second half of November within the upper 100 m depth. In the NAS, the Persian Gulf Water (PGW) salinity is above 36, as PGW moves towards the south along isopycnal layer of 26.6σθθ is potential density) salinity decreases. It is observed that the PGW high salinity water is not continuously prominent over the WAS in 2002 and in 2003. In the WAS the 27.2σθ isopycnal layer depth, corresponding to Red Sea Water (RSW), did not exactly follow the pattern of isotherms as is seen in the northern and eastern Arabian Sea. The variability related to RSW salinity is due to the underwater currents. The present study also confirms that RSW is prominent in the southeast Arabian Sea at the potential density of 27.2 with a maximum in summer monsoon compared to other seasons. The observed peak in the salinity at 27.2 density level during the spring intermonsoon is due to the influence of winter time spreading of RSW to the south of Socotra in 2002. Westward movement of Argo floats in the region east of Socotra during the winter is evident in both the observations and model studies. Water mass properties change when they move away from their source region due to the consistent horizontal advection. The changes in the water mass properties along the Argo float trajectory are confirmed by comparing with the climatological mean monthly values from the World Ocean Atlas 2001 data set.  相似文献   

6.
Summary Monthly mean surface fields of different meteorological parameters and evaporation are studied for the 1979 (poor monsoon) and 1983 (good monsoon) monsoon seasons over the Arabian Sea, in order to understand the role of evaporation on the Indian monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal in both years (3.66×1010 and 3.59×1010 tons/day in 1979 and 1983, respectively). No coherence is observed between the evaporation and the west coast rainfall within a season. It is also noted that the pressure distribution over the Arabian Sea is even important to advect the moisture towards the west coast of India, through winds.With 10 Figures  相似文献   

7.
Summary The summer monsoon onset-2004 over the Kerala Coast (Southern tip of the Indian Peninsula) was monitored in real-time using the Tropical Rainfall Measuring Mission (TRMM)/TMI derived total precipitable water vapor, wind speed and sea surface temperature (SST), National Centre for Environmental Prediction (NCEP) and QuikScat wind data. The 2004 onset was of a gradual type, with an early start (24 May), followed by slow growth to full strength (10 June). Hence, the unambiguous forecasting of such onsets becomes very difficult. The water vapor build up over the western Arabian Sea is one of the necessary conditions that gives us a lead time of two and half weeks for the onset of monsoon. The strength of the Hadley cell (monitored using NCEP meridional wind), which is associated with a large convective heat source is also used as a predictive parameter with a lead-time of two weeks. The other dynamical conditions considered are the early May propagation of the Madden Julian Oscillation (MJO) followed by a second MJO, which began in the Western Indian Ocean (WIO) and the kinetic energy over the South East Arabian Sea, with an early start around 24 May (50 m2/s2) and strengthening around 10 June (80 m2/s2). The setting of large-scale monsoon current using various satellite derived parameters and the distinct features for the year 2004 have been delineated.  相似文献   

8.
Peninsular India and Sri Lanka receive major part of their annual rainfall during the northeast monsoon season (October–December). The long-term trend in the northeast monsoon rainfall over the Indian Ocean and peninsular India is examined in the vicinity of global warming scenario using the Global Precipitation Climatology Project (GPCP) dataset available for the period 1979–2010. The result shows a significant increasing trend in rainfall rate of about 0.5 mm day?1 decade?1 over a large region bounded by 10 °S–10 °N and 55 °E–100 °E. The interannual variability of seasonal rainfall rate over peninsular India using conventional rain gauge data is also investigated in conjunction to the Indian Ocean dipole. The homogeneous rain gauge data developed by Indian Institute of Tropical Meteorology over peninsular India also exhibit the considerable upward rainfall trend of about 0.4 mm day?1 decade?1 during this period. The associated outgoing longwave radiation shows coherent decrease in the order of 2 W?m?2 decade?1 over the rainfall increase region.  相似文献   

9.
The summer monsoon onset over southern Vietnam is determined through a new criterion based on both in situ daily rainfall at six selected stations provided by the Institute of Meteorology and Hydrology, Vietnam, and the zonal component of the wind at 1,000 hPa from the National Center for Environmental Prediction/Department of Energy Reanalysis 2. Over the period 1979–2004, the summer monsoon onset mean date is on 12 May, with a standard deviation of 11.6 days. The temporal and spatial structures of the atmospheric conditions prevailing during the onset period are detailed. Clear changes are seen in the zonal wind (strengthened over the Bay of Bengal and changed from negative to positive over South Vietnam) and in convection (deeper), in association with an intensification of the meridional gradients of sea level pressure at 1,000 hPa and of moist static energy at 2 m over Southeast Asia. The predictability of onset dates is then assessed. Cross-validated hindcasts based upon four predictors linked to robust signals in the atmospheric dynamics are then provided. They are highly significant when compared to observations (56% of common variance). Basically, late (early) onsets are preceded in March–April by higher (lower) sea level pressure over the East China Sea, stronger (weaker) southeasterly winds over southern Vietnam, decreasing (increasing) deep convection over the Bay of Bengal, and the reverse situation over Indonesia (120–140°E, 0–10°S).  相似文献   

10.
During the period from 12 to 15 April, 2009 nearly the entire Iran, apart from the southern border, experienced an advective cooling event. While winter freezing concerns are typical, the nature of this freezing event was unusual with respect to its date of occurrence and accompanying synoptic meteorological situation. To analyze the freezing event, the relevant meteorological data at multiple levels of the atmosphere were examined from the NCEP/NCAR reanalysis dataset. The results showed that a polar vortex was responsible for the freezing event over the country extending southward extraordinarily in such a way that its ridge influenced most parts of Iran. This was recognized as an abnormal extension of a polar vortex in the recent years. The sea-level pressure fields indicated that a ridge of large-scale anticyclone centered over Black Sea extended southward and prevailed over most parts of Iran. This resulted in the formation of a severe cold air advection from high latitudes (Polar region) over Iran. During the study period, moisture pumping was observed from the Arabian Sea and Persian Gulf. The winds at 1000 hPa level blew with a magnitude of 10 m s?1 toward south in the region of convergence (between ?2 × 10?6 s?1 and ?12 × 10?6 s?1). The vertical profiles of temperature and humidity also indicated that the ICE structural icing occurred at multiple levels of the atmosphere, i.e, from 800 hPa through 400 hPa levels. In addition to the carburetor (or induction), icing occurred between 900 and 700 hPa levels in the selected radiosonde stations during the study period. In addition, the HYSPLIT backward trajectory model outputs were in quite good agreement with the observed synoptic features.  相似文献   

11.
Interannual variations of the monsoon onset over Kerala (MOK) have been studied using data from over 60?years (1948?C2009) of NCEP/NCAR reanalysis and outgoing long-wave radiation. The sea surface temperature fields over the North Indian Ocean associated with the MOK have been examined in association with El Nino and Indian Ocean Dipole (IOD) events which originate in the Pacific and Indian Ocean, respectively. An analysis of the tropical convective maximum showed significant differences in its strength and location during the El Nino, IOD, early, normal, and delayed MOK composites. Further, we also looked into the role of the convective systems formed over the Arabian Sea and Bay of Bengal on MOK. The most significant features during early (delayed) MOK years is the abnormal persistence of westerlies (easterlies) several days prior to MOK and enhanced (suppressed) deep convection over the southeastern Arabian Sea and the southern Bay of Bengal. Moisture builds up over peninsular India several pentads prior to MOK during La Nina, negative IOD, and concurrent La Nina and negative IOD years as compared to the El Nino, positive IOD, and concurrent El Nino and positive IOD years, indicating its significant role on MOK. The monsoon Hadley cell and Walker circulations are weaker (stronger) during a delayed (early) MOK. Further, the sea surface temperature anomalies in the western Pacific are negative (positive) during delayed (early) MOK.  相似文献   

12.
Summary The atmospheric and oceanic conditions associated with the southwest monsoon during the contrasting monsoon years of 2002 and 2003 over the Arabian Sea have been analyzed in the present study. Early onset of southwesterlies and reduced net heat gain due to low solar radiation were responsible for low sea-surface temperatures (SSTs) over the Arabian Sea during 2002 pre-monsoon (particularly in May). Conversely, light winds and an increased net heat gain set up the pre-monsoon warming in 2003. The development and intensification of deep convection over a large area of the Arabian Sea prior to the onset of the monsoon was observed during 2003, but was absent in 2002. Weak cross equatorial flow and a weak low level jet over the Arabian Sea reduced moisture transport towards the Indian subcontinent in July 2002. This scenario helped to contribute to a prolonged break in monsoon conditions during July. However, no such break in conditions occurred during July 2003. In 2002, the summer monsoon cooling of the Arabian Sea occurred well before July, whereas in 2003 cooling occurred during July. Estimates of wind driven Ekman (horizontal) and vertical transports showed maximum values in the month of June (July) in 2002 (2003). These estimates clearly show the importance of horizontal and vertical advection in the summer cooling of the Arabian Sea. During the southwest monsoon period, the Arabian Sea was warmer in 2003 than in 2002. Late onset of the southwesterlies in June, late cooling of the Arabian Sea in July, and downwelling Rossby wave propagation were responsible for the warm SSTs in 2003. Weak wind stress curl in July dampened the westward propagating sea surface height anomaly signals (Rossby waves) before they reached the western Arabian Sea in 2002, whereas, in 2003 strong wind stress curl enhanced Rossby wave propagation. During the summer monsoon period, subsurface temperatures in the south central Arabian Sea were warmer in 2003 than in 2002, particularly in July and August. Strong Ekman convergence, solar penetration, and downwelling (downward velocities) are responsible for the enhanced subsurface warming in 2003.  相似文献   

13.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

14.
李畅  姜霞  沈新勇 《山东气象》2021,41(4):62-72
利用印度气象局(India Meteorological Department,IMD)、国际气候管理最佳路径档案库(International Best Track Archive for Climate Stewardship,IBTrACS)提供的1982—2020年阿拉伯海热带气旋路径资料,美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析资料,对近39 a阿拉伯海热带气旋源地和路径特征、活跃区域、频数及气旋累积能量(accumulated cyclone energy,ACE)指数的季节特征和年际变化特征进行分析,并结合环境因素,说明其物理成因。结果表明:阿拉伯海热带气旋多发于10°~25°N,65°~75°E海域,5—6月、9—12月发生频数较高且强度较强,1—4月、7—8月发生频数较低且气旋近中心最大风速均小于35 kn;频数的季节变化主要受控于垂直风切变要素;阿拉伯海热带气旋发生频数和ACE近年有上升趋势,年际变化主要受控于海面温度(sea surface temperature,SST)和850 hPa相对湿度要素。  相似文献   

15.
经皓童  孙建奇  于水  华维 《大气科学》2021,45(5):1087-1098
本文利用1960~2017年中国西南地区115个台站观测降水资料和日本气象厅发布的55年再分析资料集,研究了中国西南地区5月降水变异的主导模态及其与阿拉伯海季风的关系。结果显示,中国西南地区5月降水的第一主导模态主要表现为全区一致的变异特征;该模态与同期5月阿拉伯海季风强度异常关系密切,但两者的关系在20世纪70年代后期发生了显著的年代际变化。在1960~1976年,阿拉伯海季风异常所引起的低层大气环流和水汽输送异常主要集中在阿拉伯海到孟加拉湾一带;阿拉伯海季风异常所引起的大气环流不能到达中国西南地区,因此它对中国西南地区5月降水的影响偏弱。但在1981~2017年,阿拉伯海季风异常可以导致整个北印度洋到南海地区的大气环流异常,进而引起中国西南地区水汽和垂直运动的变化,最终对该地区5月降水产生显著的影响。进一步的研究显示,阿拉伯海季风与中国西南地区5月降水关系的变化可能与季风自身的年代际变率有关。阿拉伯海季风在20世纪70年代末之前变率偏弱,其引起的环流异常也偏弱;相反在20世纪70年代末之后,其变率增强,它引起的大气环流异常也偏强,可以延伸到中国西南地区,进而影响到西南地区的5月降水。因此,季风变率的强弱可能在季风对西南地区5月降水的影响中起着非常重要的作用。  相似文献   

16.
This study investigates the decrease in the frequency of onset vortex of summer monsoon during recent decades using the National Center for Environmental Prediction–National Center for Atmospheric Research reanalysis (1982–2011) data. Onset vortices are known to occur over the Arabian Sea mini warm pool where the sea surface temperature peaks just before the onset of monsoon. Even though the Arabian Sea mini warm pool intensifies during the recent decades, they are not seen as a regular feature. It is found from the analysis of irrotational and non-divergent wind component at 850 and 200 hPa that during the recent decades, convergent winds dominate at upper levels and divergent winds at lower levels which inhibits convection. Moreover, the cyclonic shear vorticity shows a decrease in the recent decades which tend to reduce the boundary layer moisture convergence and lower tropospheric humidity which is an important component for the initiation of a cyclonic system. The recent decades are characterized by weak convection due to the presence of strong northerlies and descending motion at lower levels in the southeast Arabian Sea. The response of atmospheric circulation to the interdecadal variations in the warm pool and the corresponding decrease in the frequency of onset vortex formation is analyzed in detail.  相似文献   

17.
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Raya  相似文献   

18.
The evaporation rates over the Arabian Sea (AS) for the summer monsoon months (June to September) of 1987 have been computed using the bulk-aerodynamic formula. The satellite derived precipitation from the INSAT-1B VHRR (Very High Resolution Radiometer) sensor operating in the wavelength 10.5–12.5 m has been used for computing the precipitation over the AS. The net water vapour flux divergence (NFD) over AS has been computed as the difference between evaporation and precipitation. The estimates being -0.02 × 1010, 2.55 × 1010, 0.70 × 1010 and 0.44 × 1010 tons/day respectively for the months June, July, August and September. The NFD over AS was found to be positively and significantly correlated with the mean monsoon rainfall along the west coast of India.  相似文献   

19.
A comprehensive study on the chemistry of deposition and the concentration of tropospheric ozone and particulate sulfate in the ocean atmosphere was carried out for the data sets in 1990’s. It is important to study the atmospheric situation over the past years as well as the latest, especially in the East Asian region where emission amount of anthropogenic air pollutants have increased year by year due to rapid economic growth. The survey was conducted for 5 years in East Asia and West Oceania (35°N–35°S, 100–135°E) in August and September in 1990’s. The purpose of the survey was to study and understand the chemistry of deposition and the concentration of tropospheric ozone and particulate sulfate in the ocean atmosphere comprehensively in one project. Rainfall over the ocean was insufficiently neutralized. Gas and aerosol over the ocean were mature, i.e., well-mixed, during the period of the transportation. The characteristic latitudinal dependence was observed in the tropospheric ozone concentration, namely, higher in the southern hemisphere and lower in the northern hemisphere (approximately 25 ppb in the 10–40°S region and 5–15 ppb in the 20–40°N region). On the other hand, high concentrations of tropospheric ozone of over 30 ppb were observed in the northern hemisphere, which was attributable to the long-range transportation. The TSP concentration was approximately under the level of 40 μg m?3 irrespectively of the latitude; in contrast, the nss-SO4 2- concentration showed a clear latitudinal dependence, i.e., higher in the northern hemisphere and lower in the southern hemisphere. The background levels of the nss-SO4 2- concentration were approximately 0.5 μg m?3 in the 10–40°S region and 2–3 μg m?3 and 4–5 μg m?3 in the 0–20°N and 20–40°N regions, respectively.  相似文献   

20.
During the summer (8 June through 3 September) of 2008, 9 ozone profiles are examined from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (O3) variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period) show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL) events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of reduced O3 concentrations during the monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa), a significant increase in O3 concentrations (10–20 ppb) occur which we suggest is caused by enhanced biogenic NOX emissions from Sahelian soils following rain events on 28 June and 1 July. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, reducing ozone concentrations through heterogeneous chemical processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOX from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, lower ozone concentrations are observed and modeled which we attribute to the dry deposition of ozone and episodes of ozone poor air that is horizontally transported into the Sahel from low latitudes by African Easterly Waves (AEWs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号