首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lack of uncertainty measures in operational satellite rainfall (SR) products leads to a situation where users of the SR products know that there are significant errors in the products, but they have no quantitative information about the distribution of these errors. The authors propose a semiparametric model to characterize the conditional distribution of actual rainfall (AR) given measures from SR products. The model consists of two components: a conditional gamma density given each SR, and a smooth functional relationship between the gamma parameters and SR. The model is developed for monthly rainfall, estimated from a satellite with sampling frequency once a day, averaged over an area of 512 × 512 km2 in the Mississippi River basin. The conditional distribution results are more informative than deterministic SR products since the whole conditional distribution enables users to take appropriate actions according to their own risk assessments and cost/benefit analyses.  相似文献   

2.
3.
An extensive validation of two of the most popular and recently upgraded satellite rainfall products, 3B42 and 3B42RT, was performed over the Evros catchment in southeastern Europe using data recorded from January 2000 to April 2009. For conducting this validation study, the Climate Prediction Center's (CPC) ground data were used. The satellite data products were aggregated to daily time series, remapped to spatial resolution of 0.5°, validated against CPC, and intercompared using a variety of statistical indices and coefficients. After the validation process, all three data sets (CPC, 3B42, and 3B42RT) were separately fed in a statistical rainfall?Crunoff model, in order to predict the five major recorded flood events which occurred in the Evros catchment during the last decade. It has been found that post-calibration with ground data, which is present only in 3B42 product, is a necessity for operational flood forecasting and similar studies conducted in areas at mid-latitudes. Knowledge of rainfall events with small intensities is crucial for estimating the total rainfall height and drastically improves the skill of the satellite product.  相似文献   

4.
Recent studies have showed that there is a significant decrease in rainfall over Greece during the last half of the pervious century, following an overall decrease of the precipitation at the eastern Mediterranean. However, during the last decade an increase in rainfall was observed in most regions of the country, contrary to the general circulation climate models forecasts. An updated high-resolution dataset of monthly sums and annual daily maxima records derived from 136 stations during the period 1940–2012 allowed us to present some new evidence for the observed change and its statistical significance. The statistical framework used to determine the significance of the slopes in annual rain was not limited to the time independency assumption (Mann-Kendall test), but we also investigated the effect of short- and long-term persistence through Monte Carlo simulation. Our findings show that (a) change occurs in different scales; most regions show a decline since 1950, an increase since 1980 and remain stable during the last 15 years; (b) the significance of the observed decline is highly dependent to the statistical assumptions used; there are indications that the Mann-Kendall test may be the least suitable method; and (c) change in time is strongly linked with the change in space; for scales below 40 years, relatively close regions may develop even opposite trends, while in larger scales change is more uniform.  相似文献   

5.
6.
This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly characteristics of warm-season (May-September) rainfall among rain gauge observations, China merged hourly precipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH). By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measurements over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA-Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an intermediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is not obvious, and thus the satellite estimates are more reliable in representing sub-daily variation of rainfall from the RRE perspective. This study proposes a reasonable method to compare satellite products with rain gauge observations on the sub-daily scale, which also has great potential to be used in evaluating the spatiotemporal variation of cloud and rainfall in numerical models.  相似文献   

7.
Research has been conducted to validate monthly and seasonal rain rates derived from the Tropical Rainfall Measuring Mission Precipitation Radar (PR) using rain gauge data analysis from 2004 to 2008. The study area employed 20 gauges across Indonesia to monitor three Indonesian regional rainfall types. The relationship of PR and rain gauge data statistical analysis included the linear correlation coefficient, the mean bias error (MBE), and the root mean square error (RMSE). Data validation was conducted with point-by-point analysis and spatial average analysis. The general results of point-by-point analysis indicated satellite data values of medium correlation, while values of MBE and RMSE tended to indicate underestimations with high square errors. The spatial average analysis indicated the PR data values are lower than gauge values of monsoonal and semi-monsoonal type rainfall, while anti-monsoonal type rainfall was overestimated. The validation analysis showed very good correlation with the gauge data of monsoonal type rainfall, high correlation for anti-monsoonal type rainfall, but medium correlation for semi-monsoonal type rainfall. In general, the statistical error level of monthly seasonal monsoonal type conditions is more stable compared to other rainfall types. Unstable correlations were observed in months of high rainfall for semi-monsoonal and anti-monsoonal type rainfall.  相似文献   

8.
Chen  Fengrui  Gao  Yongqi 《Climate Dynamics》2018,51(9-10):3311-3331
Climate Dynamics - Many studies have reported the excellent ability of high-resolution satellite precipitation products (0.25° or finer) to capture the spatial distribution of precipitation....  相似文献   

9.
Summary Hourly precipitation amounts recorded at the Aristotelian University of Thessaloniki for the period 1947–1985 are analysed. The contributions of each hour towards the annual, seasonal, and monthly mean diurnal variations are discussed and possible causes outlined. The probabilities of measurable precipitation occurring at any particular hour in a month and the importance of such a statistic to the tourist industry are noted.With 5 Figures  相似文献   

10.
Theoretical and Applied Climatology - Selection of a best suited satellite-based gridded rainfall product (SGRP) is challenging due to their significant variations at spatial and temporal scale....  相似文献   

11.
利用GPM卫星探测两个时次的资料,以1808号超强台风"玛利亚"为研究对象,分析了台风降水率、降水类型及台风高度水平分布,降水率垂直廓线变化特征,以及降水率三维结构分布特征。得出以下主要结论:两个时刻"玛利亚"均处在超强台风级,A时刻台风眼区为深厚对流区,B时刻眼区对流有所减弱,但是有强螺旋雨带出现。A、B时刻的降水率最大值与风暴顶高度并非一一对应,还与降水云系中微物理过程有关。GMI低频18.7 GHz探测的水粒子含量的大值区与强降水率对应较好,高频183.31±3 GHz探测的冰粒子信号与风暴顶高度分布一致。不同降水率对应的垂直廓线表明,降水率在5 km高度出现急剧变化,这是由于在该高度上雨滴碰并增长或者蒸发减小。从A时刻到B时刻,云墙区大于10 mm·h~(-1)的云墙半径内缩,B时刻眼壁与螺旋雨带之间存在着弱降水区及无降水区。  相似文献   

12.
谢涛  田昊  刘彬贤  赵立 《气象科学》2021,41(6):791-803
针对FY-4A卫星降水反演产品GPM-SCaMPR中的误差,提出台风区域降水云团移动速度的计算方法并用于误差改进,以全球降水观测计划(Global Precipitation Mission,GPM)的IMERG(the Integrated Multi-satellite Retrievals for GPM)降水产...  相似文献   

13.
Raingauge data from four meteorological stations in Chalkidiki peninsula (Greece) were used to identify the characteristics of the synoptic circulation patterns associated with cold-season heavy rainfall events and corresponding flooding over the area. Precipitation climatology over the complex topography of Chalkidiki is characterized by limited annual rainfall, but in the occurrence of heavy rainfall episodes daily accumulations are exceptionally high with increased precipitation rates, leading often to severe flooding. Fifty-five cases of high daily accumulations for the period of 1997 to 2010, mostly observed during December and October, were classified into eight clusters by applying S-Mode Factor Analysis and Cluster Analysis to the ERA-Interim grid point reanalysis data. The results revealed that, in most cases, intense rainfall and flooding is produced by synoptic scale disturbances that generate and sustain cyclonic activity over south Italy, the Ionian, and less frequently over the Aegean Sea. In particular, the atmospheric circulation patterns associated with heavy rainfall are characterized by the presence of a southeasterly–easterly low-level humid flow over Chalkidiki in conjunction with the potentially unstable lower troposphere influenced by mid-level cyclonic vorticity advection and enhanced low-level convergence over the complex terrain.  相似文献   

14.
庞玥  刘祥  韩潇  胡春梅  王欢 《气象科学》2022,42(4):549-556
利用重庆地区34个国家气象站降水资料和ECMWF集合预报降水资料,系统检验和评估了集合预报统计量产品及后处理技术产品对2014—2016年5—9月重庆暴雨的预报性能。结果表明:集合统计量产品中最大值、90%分位数、融合产品、概率匹配平均、75%分位数对暴雨预报有一定参考性,其中90%分位数和融合产品对暴雨落区预报较好,最大值对暴雨强度预报有一定指示意义,但表现为明显的湿偏差。集合预报后处理技术产品的暴雨TS评分较控制预报和集合平均有明显提高,其中概率预报、最优百分位、融合—概率匹配、频率匹配法的暴雨TS评分超过最大值,对暴雨强度预报具有较好的指导意义,其预报偏差均表现为湿偏差,融合—概率匹配和频率匹配法对暴雨落区预报较好,概率匹配—融合对降低暴雨空报率较好。  相似文献   

15.
Recent research efforts have been geared towards developing high-resolution rainfall products from satellites for hydrological applications. A necessary step in assessing the potential and utility of these products is to quantify the uncertainty associated with them at validation scales appropriate for hydrological applications. The main objective of this paper is to evaluate the accuracy of the widely-known PERSIANN-CCS high-resolution (hourly, 0.04° × 0.04°) satellite rainfall products against high-quality NEXRAD radar rainfall observations in the Little Washita watershed. Our results reveal that (1) PERSIANN-CCS shows high skills in reproducing the patterns of inter-annual rainfall variability on a monthly basis; (2) both at the hourly and storm scales, the performance statistics of PERSIANN-CCS exhibit large spread, suggesting that the quality of PERSIANN-CCS product is almost unique for each hour and storm; and (3) significant improvement in performance statistics is obtained as PERSIANN-CCS products are averaged to longer sub-daily time scales. The implications of our results are: (1) PERSIANN-CCS could be used with high confidence for inter-annual rainfall variability studies; (2) PERSIANN-CCS products need to be accompanied by corresponding hourly error estimates in order to provide meaningful error estimates for hydrological applications; and (3) research is needed to characterize the tradeoff between the quality of rainfall input and the space-time resolution of hydrological modeling, as a function of watershed size and hydrologic model complexity level.  相似文献   

16.
The Bayes Decision (BD) method was used to distinguish the corrective and stratiform components of cloud sys-tems from GMS-4 satellite data. A technique originally developed by Adler and Negri (1988, hereafter abbreviated AN) was improved for estimating the convective and stratiform cloud precipitation areas and rates of cloud systems from GMS satellite imagery. It has been applied to a tropical cyclonic cloud cluster observed over east coast area of China on September 23, 1992, which brought about flood disaster in that region. Overlaid 6-hour surface rainfall ob-servations show that the rainfall areas and amounts match with results from improved AN technique. The successful application of the Adler and Negri’s technique to convective and stratiform clouds provides encouragement for the use of this method over large region of mid-latitude China where radar data are not fully covered.  相似文献   

17.
18.
In order to analyze the effects of the duration of precipitation events, trends in extreme rainfall over the Iberian Peninsula (IP) for multi-day extreme precipitation events (1 to 7?days) were evaluated from records of 52 observatories regularly distributed over Iberia with no missing data for the common period 1958–2004. Two approaches were used: first, the nonparametric Mann–Kendall test together with the Sen method, and second, a parametric test based on the statistical theory of extreme values, involving time-dependent parameters to account for possible temporal changes in the frequency distribution. It was found that, in winter, there were significant negative trends for a great part of the Iberian Peninsula, but significant positive trends for the southeast over areas that shrank as the number of days considered for the precipitation event increased. Spring also showed negative trends for a great part of the IP but with a major area of positive trend over the northeast that remained unchanged when considering the maxima of from 1 to 7?days of rainfall. Autumn showed a bipolar spatial pattern, with the west being positive and the east negative.  相似文献   

19.
曾勇  杨莲梅 《暴雨灾害》2020,38(1):41-51, 182

利用常规观测、风云卫星、多普勒天气雷达、CMORPH卫星降水量融合资料和NCEP/NCAR(0.25°×0.25°)再分析资料,对2016年6月16-17日新疆西部一次罕见暴雨过程进行中尺度分析。结果表明:(1)该暴雨过程具有累计雨量大、暴雨强度强、局地日雨量破极值、短时强降水范围广等特点。暴雨区位于200 hPa高空西南急流出口区左侧、500 hPa偏南气流及700 hPa切变线附近。较强的CAPEK指数对该暴雨有很好的指示意义。(2)该暴雨过程发生在低层辐合、高层辐散、低层较湿的有利背景下。强正涡度、强辐合和强上升运动不断将水汽和能量向上输送,为暴雨的产生提供有利的环境条件。(3)中亚地区中尺度雨团在发展演变过程中,逐渐形成西南-东北向带状多中心雨带,中心依次到达伊犁北部沿山地区,和原有的中尺度雨团共同作用,造成暴雨天气过程。中尺度对流云团不断产生于中亚地区,在东移过程中不断发展加强依次到达暴雨区,致使暴雨区不断产生短时强降水。(4)暴雨过程两个时段的中尺度对流系统存在明显差异,第一时段主要为孤立中尺度对流系统,造成伊宁博尔博松站成为暴雨中心并出现最强短时强降水的直接系统是风场特征明显的中γ尺度对流单体并在暴雨区维持少动。第二时段为CR达50 dBz、DVIL达4 g·m-3,长度达70 km、宽度达10km且呈准南北态的线状中尺度对流系统,其在向东移动过程中造成多站依次出现短时强降水天气。

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号