首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The climate community has made significant progress in observing, understanding and predicting El Niño and Southern Oscillation (ENSO) over the last 30 years. In spite of that, unresolved questions still remain, including ENSO diversity and extreme events, decadal modulation, predictability, teleconnection, and the interaction of ENSO with other climate phenomena. In particular, the existence of a different type of El Niño from the conventional El Niño has been proposed. This type of El Niño has occurred more frequently during the recent decades and received a great attention in the climate community. This review provides recent progresses on dynamics, decadal variability and future projection of El Niño, with a focus on the two types of El Niño.  相似文献   

2.
El Niño–Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.  相似文献   

3.
ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO) on the interannual timescale in a companion paper. In this study, the connection between the transition chains of the four oscillations (the NO and NPO, the SO and AAO) and the El Nifio/La Nifia cycle were examined. It was found that during the transitions of the four oscillations, alternate anticyclonic/cyclonic correlation centers propagated from the Western Pacific to the Eastern Pacific along both sides of the equator. Between the anticyclonic/cyclonic correlation centers, the zonal wind anomalies also moved eastwardly, favoring the advection of sea surface temperature anomalies from the tropical Western Pacific to the Eastern Pacific. When the anti cyclonic anomalies arrived in the Eastern Pacific, the positive phase of NO/SO and La Nifia were established and vice versa. Thus, in 4-6 years, with an entire transition chain of the four oscillations, an E1 Nifio/La Nifia cycle completed. The eastward propagation of the covarying anomalies of the sea level pressure, zonal wind, and sea surface temperature was critical to the transition chains of the four oscillations and the cycle of E1 Nifio/La Nifia. Based on their close link, a new empirical prediction method of the timing of E1 Nifio by the transition chains of the four oscillations was proposed. The assessment provided confidence in the ability of the new method to supply information regarding the long-term variations of the ocean and atmosphere in the tropical Pacific.  相似文献   

4.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

5.
Understanding the SAM influence on the South Pacific ENSO teleconnection   总被引:3,自引:1,他引:2  
The relationship between the El Niño Southern Oscillation (ENSO) and the Southern Hemisphere Annular Mode (SAM) is examined, with the goal of understanding how various strong SAM events modulate the ENSO teleconnection to the South Pacific (45°–70°S, 150°–70°W). The focus is on multi-month, multi-event variations during the last 50 years. A significant (p < 0.10) relationship is observed, most marked during the austral summer and in the 1970s and 1990s. In most cases, the significant relationship is brought about by La Niña (El Niño) events occurring with positive (negative) phases of the SAM more often than expected by chance. The South Pacific teleconnection magnitude is found to be strongly dependent on the SAM phase. Only when ENSO events occur with a weak SAM or when a La Niña (El Niño) occurs with a positive (negative) SAM phase are significant South Pacific teleconnections found. This modulation in the South Pacific ENSO teleconnection is directly tied to the interaction of the anomalous ENSO and SAM transient eddy momentum fluxes. During La Niña/SAM+ and El Niño/SAM? combinations, the anomalous transient momentum fluxes in the Pacific act to reinforce the circulation anomalies in the midlatitudes, altering the circulation in such a way to maintain the ENSO teleconnections. In La Niña/SAM? and El Niño/SAM+ cases, the anomalous transient eddies oppose each other in the midlatitudes, overall acting to reduce the magnitude of the high latitude ENSO teleconnection.  相似文献   

6.
The mechanisms controlling the El Niño have been studied by analyzing mixed layer heat budget of daily outputs from a free coupled simulation with the Climate Forecast System (CFS). The CFS is operational at National Centers for Environmental Prediction, and is used by Climate Prediction Center for seasonal-to-interannual prediction, particularly for the prediction of the El Niño and Southern Oscillation (ENSO) in the tropical Pacific. Our analysis shows that the development and decay of El Niño can be attributed to ocean advection in which all three components contribute. Temperature advection associated with anomalous zonal current and mean vertical upwelling contributes to the El Niño during its entire evolutionary cycle in accordance with many observational, theoretical, and modeling studies. The impact of anomalous vertical current is found to be comparable to that of mean upwelling. Temperature advection associated with mean (anomalous) meridional current in the CFS also contributes to the El Niño cycle due to strong meridional gradient of anomalous (mean) temperature. The surface heat flux, non-linearity of temperature advection, and eddies associated with tropical instabilities waves (TIW) have the tendency to damp the El Niño. Possible degradation in the analysis and closure of the heat budget based on the monthly mean (instead of daily) data is also quantified.  相似文献   

7.
Hoell  Andrew  Funk  Chris  Magadzire  Tamuka  Zinke  Jens  Husak  Greg 《Climate Dynamics》2015,44(5-6):1583-1594
Climate Dynamics - A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred...  相似文献   

8.
The sea surface temperature (SST) or sea level pressure (SLP) has usually been used to measure the strength of El Niño–Southern Oscillation (ENSO) events. In this study, two new indices, based on the upper-ocean heat content (HC), are proposed to quantify the two “flavours” of El Niño (i.e., the Cold Tongue El Niño (CTE) and Warm Pool El Niño (WPE)). Compared with traditional SST or SLP indices, the new HC-based indices can distinguish CTE and WPE events much better and also represent the two leading modes of the interannual variability of the atmosphere–ocean coupled system in the tropical Indo-Pacific region. The two leading modes are obtained by performing multivariate Empirical Orthogonal Function analysis on two oceanic variables (SST and HC) over the tropical Pacific (30°S–30°N, 120°E–80°W) and six atmospheric variables (outgoing longwave radiation, SLP, streamfunction, and velocity potential at 850?hPa and 200?hPa) over the tropical Indo-Pacific region (30°S–30°N, 60°E–80°W) for the period 1980–2010. Because the two new HC-based indices are capable of better depicting coherent variations between the ocean and atmosphere, they can provide a supplementary tool for ENSO monitoring of and climate research into the two flavours of El Niño.  相似文献   

9.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

10.
The seasonal mean extra-tropical atmospheric response to El Niño/Southern Oscillation (ENSO) is assessed in the historical and pre-industrial control CMIP5 simulations. This analysis considers two types of El Niño events, characterized by positive sea surface temperature (SST) anomalies in either the central equatorial Pacific (CP) or eastern equatorial Pacific (EP), as well as EP and CP La Niña events, characterized by negative SST anomalies in the same two regions. Seasonal mean geopotential height anomalies in key regions typify the magnitude and structure of the disruption of the Walker circulation cell in the tropical Pacific, upper tropospheric ENSO teleconnections and the polar stratospheric response. In the CMIP5 ensembles, the magnitude of the Walker cell disruption is correlated with the strength of the mid-latitude responses in the upper troposphere i.e., the North Pacific and South Pacific lows strengthen during El Niño events. The simulated responses to El Niño and La Niña have opposite sign. The seasonal mean extra-tropical, upper tropospheric responses to EP and CP events are indistinguishable. The ENSO responses in the MERRA reanalysis lie within the model scatter of the historical simulations. Similar responses are simulated in the pre-industrial and historical CMIP5 simulations. Overall, there is a weak correlation between the strength of the tropical response to ENSO and the strength of the polar stratospheric response. ENSO-related polar stratospheric variability is best simulated in the “high-top” subset of models with a well-resolved stratosphere.  相似文献   

11.
The impacts and cooperative effects of volcanic eruptions and ENSO (El Niño/Southern Oscillation) are analyzed in a millennium simulation for 800–2005 AD using the earth system model (ESM) ECHAM5/MPIOM/JSBACH subject to anthropogenic and natural forcings. The simulation comprises two ensembles, a first with weak (E1, five members) and a second with strong (E2, three members) variability total solar irradiance. In the analysis, the 21 most intense eruptions are selected in each ensemble member. Volcanoes with neutral ENSO states during two preceding winters cause a global cooling in the year after eruptions up to ?2.5°C. The nonsignificant positive values in the tropical Pacific Ocean indicate an El Niño-like warming. In the winter after an eruption, warming is mainly found in the Arctic Ocean and the Bering Sea in E2 warming extends to Siberia and central Asia. The recovery times for the volcano-induced cooling (average for 31 eruptions) vary globally between 1 and 12 years. There is no significant increase of El Niño events after volcanic eruptions in both ensembles. The simulated temperature and the drought indices are compared with corresponding reconstructions in East Asia. Volcanoes cause a dramatic cooling in west China (?2°C) and a drought in East China during the year after the eruption. The reconstructions show similar cooling patterns with smaller magnitudes and confirm the dryness in East China. Without volcanoes, El Niño events reduce summer precipitation in the North, while South China becomes wetter; La Niña events cause opposite effects. El Niño events in the winters after eruptions compensate the cooling caused by volcanoes in most regions of China (consistent with reconstructions), while La Niña events intensify the cooling (up to ?2.5°C). The simulated and reconstructed drought indices show tripole patterns which are altered by El Niño events. The simulated impact of the Tambora eruption in 1815, which caused the “year without summer” of 1816 in Europe and North America and led to coldness and famines in the Chinese province Yunnan, depends crucially on the ENSO state of the coupled model. A comparison with reconstructed El Niño events shows a moderate cool climate with wet (in the south) and extreme dry anomalies (in the north) persisting for several years.  相似文献   

12.
The relationship between the El Niño-Southern Oscillation (ENSO) and hydrologic variability in the United States is investigated using Empirical Orthogonal Function (EOF)/Principal Component Analysis (PCA). The multivariate ENSO index (MEI) is utilized to identify strong coherences associated with multiple months (1-, 2-, 4-, 6-, 12-, 24-, 48-month) of the Log-Standardized Hydrologic Drought Index (LSHDI) in the conterminous states for the period 1950–2005. Based on 56 years of monthly streamflow data for 102 forecast climate divisions, this research explores the spatial and temporal variation of hydrologic responses corresponding to ENSO events. Preliminary results show that a potential predictor of the dominant streamflow modes in the northern Great Plains is identified from streamflows in western Arizona. Also, positive relationships between hydrologic drought and El Niño were found in the Pacific Northwest (Washington, Oregon, and northern California), whereas negative relationships were detected in southern California and the northern Great Plains. These findings will provide useful insights to help improve streamflow forecast potential and capabilities, and minimize the impacts of hydrologic events (e.g. floods and droughts) associated with ENSO events.  相似文献   

13.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

14.
Reconstructions of past climate are important for providing a historical context for evaluating the nature of 20th century climate change. Here, a number of percentile-based palaeoclimate reconstructions were used to isolate signals of both phases of El Niño–Southern Oscillation (ENSO). A total of 92 (82) El Niño (La Niña) events were reconstructed since A.D. 1525. Significantly, we introduce the most comprehensive La Niña event record compiled to date. This annual record of ENSO events can now be used for independent verification of climate model simulations, reconstructions of ENSO indices and as a chronological control for archaeologists/social scientists interested in human responses to past climate events. Although extreme ENSO events are seen throughout the 478-year ENSO reconstruction, approximately 43% of extreme and 28% of all protracted ENSO events (i.e. both El Niño and La Niña phase) occur in the 20th century. The post-1940 period alone accounts for 30% of extreme ENSO years observed since A.D. 1525. These results suggest that ENSO may operate differently under natural (pre-industrial) and anthropogenic background states. As evidence of stresses on water supply, agriculture and natural ecosystems caused by climate change strengthens, studies into how ENSO will operate under global warming should be a global research priority.  相似文献   

15.
The El Niño Southern Oscillation plays a key role in modulating interannual rainfall variability in Mexico. While El Niño events are linked to drought in Mexico, uncertainty exists about the spatial pattern and causal mechanisms behind El Niño-induced drought. We use lead/lag correlation analysis of rainfall station data to identify the spatial pattern of drought associated with the summer before, and the spring following, the peak of warm SST anomalies in the eastern equatorial Pacific. We also use atmospheric fields from the North American Regional Reanalysis to calculate the anomalous moisture budget and diagnose the mechanisms associated with El Niño-induced drought in Mexico. We find that reduced rainfall occurs in Mexico in both the summer before and the spring after a peak El Niño event, especially in regions of climatologically strong convection. The teleconnection in the developing phase of El Niño is primarily driven by changes in subsidence resulting from anomalous convection in the equatorial Pacific. The causes of drought during the decaying phase of El Niño events are varied: in some years, descent anomalies dominate other moisture budget terms, while in other years, drying of the boundary layer on the Mexican plateau is important. We suggest that the latter may result from the interaction of weakened southeasterly winds in the Intra-Americas Sea with high topography along the Atlantic coast of Mexico. Weakened winds are likely driven by a reduced sea level pressure gradient between the Atlantic and the Pacific. Changes in easterly wave activity may contribute to drought in the developing phase of El Niño, but may be less important in the decaying phase of El Niño.  相似文献   

16.
The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958–2013 (1920–2013). The interannual variations of the first two leading EOF modes are linked with the El Niño–Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO–ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northward to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO–ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest–northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.  相似文献   

17.
Xu  Hui  Chen  Lei  Duan  Wansuo 《Climate Dynamics》2021,56(11):3797-3815

The optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.

  相似文献   

18.
Physical and biological changes in the marine environment, induced by oceanic-atmospheric processes, can be imprinted in massive coral skeletons. Herein, we present an evidence of potential El Niño impacts at the Southwestern South Atlantic Ocean (SWSA) inferred from the sclerochronology of the reef coral Favia leptophylla. The application of spectral analysis (wavelet decomposition and the iterative regression) to coral growth length and to meteorological-oceanographic parameters (air temperature, sea surface temperature and precipitation) as well as to Southern Oscillation Index (SOI) and solar irradiation indicated a major significant inverse relationship between SOI and coral growth length at the 4–8 years frequency band. We propose here that coral growth length from the SWSA could be affected by El Niño Southern Oscillation (ENSO) events through an “atmospheric bridge”, in contrast to its direct effect at the Pacific Ocean, related to the increase in sea surface temperature.  相似文献   

19.
The two types of El Niño that have been identified, namely the eastern Pacific (EP) and central Pacific (CP) El Niños, are known to exert different climatic impacts on the North Atlantic region during winter. Here, we investigate the characteristics of the teleconnection of the two El Niño types with a focus on the stratosphere-troposphere coupling. During the EP El Niño, polar stratospheric warming and polar vortex weakening frequently occur with a strong tendency for downward propagation near the tropopause. Consequently, the atmospheric pattern within the troposphere over the North Atlantic sector during midwinter closely resembles the negative North Atlantic Oscillation pattern. In contrast, during CP El Niño events stratospheric warming events exhibit a much weaker downward propagation tendency. This difference in the stratospheric circulation response arises from the different seasonal evolution of the tropospheric wave response to the two El Niño types. For the EP El Niño, the Aleutian Low begins growing during December and is sustained throughout the entire winter (December to February), which provides favorable conditions for the continuous downward propagation of the stratospheric warming. We also discuss the origin of the difference in the teleconnections from the two types of El Niño associated with the distinct longitudinal position of the warm SST anomaly that determines troposphere-stratosphere coupling.  相似文献   

20.
The El Niño Southern Oscillation (ENSO) is the Earth’s strongest climate fluctuation on inter-annual time scales and has global impacts although originating in the tropical Pacific. Many point indices have been developed to describe ENSO but the Multivariate ENSO Index (MEI) is considered as the most representative since it links six different meteorological parameters measured over the tropical Pacific. Extreme values of MEI are correlated to the extreme values of atmospheric CO2 concentration rate variations and negatively correlated to equivalent scale extreme values of the length of day rate variation. We evaluate a first-order conversion function between MEI and the other two indexes using their annual rate of variation. The quantification of the strength of the coupling herein evaluated provides a quantitative measure to test the accuracy of theoretical model predictions. Our results further confirm the idea that the major local and global Earth–atmosphere system mechanisms are significantly coupled and synchronized to each other at multiple scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号