首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.  相似文献   

2.
There is a growing need of the climate change impact modeling and adaptation community to have more localized climate change scenario information available over complex topography such as in Switzerland. A gridded dataset of expected future climate change signals for seasonal averages of daily mean temperature and precipitation in Switzerland is presented. The basic scenarios are taken from the CH2011 initiative. In CH2011, a Bayesian framework was applied to obtain probabilistic scenarios for three regions within Switzerland. Here, the results for two additional Alpine sub-regions are presented. The regional estimates have then been downscaled onto a regular latitude-longitude grid with a resolution of 0.02° or roughly 2 km. The downscaling procedure is based on the spatial structure of the climate change signals as simulated by the underlying regional climate models and relies on a Kriging with external drift using height as auxiliary predictor. The considered emission scenarios are A1B, A2 and the mitigation scenario RCP3PD. The new dataset shows an expected warming of about 1 to 6 °C until the end of the 21st century, strongly depending on the scenario and the lead time. Owing to a large vertical gradient, the warming is about 1 °C stronger in the Alps than in the Swiss lowlands. In case of precipitation, the projection uncertainty is large and in most seasons precipitation can increase or decrease. In summer a distinct decrease of precipitation can be found, again strongly depending on the emission scenario.  相似文献   

3.
We describe a set of global climate change scenarios that have been used in a series of studies investigating the global impacts of climate change on several environmental systems and resources — ecosystems, food security, water resources, malaria and coastal flooding. These scenarios derive from modelling experiments completed by the Hadley Centre over the last four years using successive versions of their coupled ocean–atmosphere global climate model. The scenarios benefit from ensemble simulations (made using HadCM2) and from an un-flux-corrected experiment (made using HadCM3), but consider only the effects of increasing greenhouse gas concentrations. The effects of associated changes in sulphate aerosol concentrations are not considered. The scenarios are presented for three future time periods — 30-year means centred on the 2020s, the 2050s and the 2080s — and are expressed with respect to the mean 1961–1990 climate. A global land observed climatology at 0.5° latitude/longitude resolution is used to describe current climate. Other scenario variables — atmospheric CO2 concentrations, global-mean sea-level rise and non-climatic assumptions relating to population and economy — are also provided. We discuss the limitations of the created scenarios and in particular draw attention to sources of uncertainty that we have not fully sampled.  相似文献   

4.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

5.
Predictions of future temperature increases depend critically on the projections of future greenhouse gas emissions. Yet there is a vigorous debate about how these projections should be undertaken. This paper explores a range of methodological issues surrounding projecting greenhouse emissions over the next century. It points out that understanding future emissions requires a framework that deals with the sources of economic growth and allows for endogenous structural change. It also explores the role of convergence assumptions and the “Castles and Henderson Critique” of the Special Report on Emission Scenarios (SRES) regarding use of Market Exchange Rates (MERs) rather than Purchasing Power Parity exchange rates (PPPs) to benchmark income differentials in the world economy. In the G-Cubed multi-country model, we show that emission projections based on convergence assumptions defined in MER terms, are 40% higher by 2100 than emissions generated using a PPP comparison of income differentials between economies. We support the argument presented by Castles and Henderson, that the use of MERs in the SRES represents a serious analytical error. It is not clear what this means for the SRES projections because the SRES is not transparent in its assumptions. In the G-Cubed model, the error leads to considerably higher emissions projections.  相似文献   

6.
Climate change in California: scenarios and approaches for adaptation   总被引:1,自引:0,他引:1  
Even with aggressive global action to reduce greenhouse gas emissions, the climate will continue to change for decades due to previous emissions and the inertia in biogeophysical and social systems. Therefore, as a complement to mitigation actions, society must also focus on enhancing its capacity to adapt to the unavoidable impacts of climate change that we are already experiencing and will continue to experience over the next few decades. Resource managers, regional planners, and government agencies need to consider climate risks in their planning. We provide an overview of climate change scenarios for California and suggestions on the use of climate projections in state and regional planning efforts in the future.  相似文献   

7.
Summary Regional climate model and statistical downscaling procedures are used to generate winter precipitation changes over Romania for the period 2071–2100 (compared to 1961–1990), under the IPCC A2 and B2 emission scenarios. For this purpose, the ICTP regional climate model RegCM is nested within the Hadley Centre global atmospheric model HadAM3H. The statistical downscaling method is based on the use of canonical correlation analysis (CCA) to construct climate change scenarios for winter precipitation over Romania from two predictors, sea level pressure and specific humidity (either used individually or together). A technique to select the most skillful model separately for each station is proposed to optimise the statistical downscaling signal. Climate fields from the A2 and B2 scenario simulations with the HadAM3H and RegCM models are used as input to the statistical downscaling model. First, the capability of the climate models to reproduce the observed link between winter precipitation over Romania and atmospheric circulation at the European scale is analysed, showing that the RegCM is more accurate than HadAM3H in the simulation of Romanian precipitation variability and its connection with large-scale circulations. Both models overestimate winter precipitation in the eastern regions of Romania due to an overestimation of the intensity and frequency of cyclonic systems over Europe. Climate changes derived directly from the RegCM and HadAM3H show an increase of precipitation during the 2071–2100 period compared to 1961–1990, especially over northwest and northeast Romania. Similar climate change patterns are obtained through the statistical downscaling method when the technique of optimum model selected separately for each station is used. This adds confidence to the simulated climate change signal over this region. The uncertainty of results is higher for the eastern and southeastern regions of Romania due to the lower HadAM3H and RegCM performance in simulating winter precipitation variability there as well as the reduced skill of the statistical downscaling model.  相似文献   

8.
We present an analysis of climate change over southern South America as simulated by a regional climate model. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. The simulations cover a 10-year period representing present-day climate (1981–1990) and two future scenarios for the SRESA2 and B2 emission scenarios for the period 2081–2090. There are a few quantitative differences between the two regional scenarios. The simulated changes are larger for the A2 than the B2 scenario, although with few qualitative differences. For the two regional scenarios, the warming in southern Brazil, Paraguay, Bolivia and northeastern Argentina is particularly large in spring. Over the western coast of South America both scenarios project a general decrease in precipitation. Both the A2 and B2 simulations show a general increase in precipitation in northern and central Argentina especially in summer and fall and a general decrease in precipitation in winter and spring. In fall the simulations agree on a general decrease in precipitation in southern Brazil. This reflects changes in the atmospheric circulation during winter and spring. Changes in mean sea level pressure show a cell of increasing pressure centered somewhere in the southern Atlantic Ocean and southern Pacific Ocean, mainly during summer and fall in the Atlantic and in spring in the Pacific. In relation to the pressure distribution in the control run, this indicates a southward extension of the summer mean Atlantic and Pacific subtropical highs.  相似文献   

9.
Identifying changes in reference evapotranspiration (ETo) can help in future planning of crop water requirements and water resources for high water-use efficiency. This study analyzes the ETo trends on a seasonal and annual timescale by applying various statistical tools to data from 41 Iranian weather stations during the period between 1966 and 2005. The Mann–Kendall test after removal of significant serial correlation was used to determine the statistical significance of the trends, and the change point in the ETo time series was determined using the cumulative sum technique. The results showed that (1) the significant increasing trends of annual ETo were observed at seven stations which are located in different parts of Iran, (2) the stations located at the southeast, northeast, and northwest corners of Iran experienced the highest positive change of annual ETo, and (3) the changes in seasonal ETo were most pronounced in the winter season, both in terms of trend magnitude and the number of stations with significant trends.  相似文献   

10.
Climate change impact on precipitation for the Amazon and La Plata basins   总被引:2,自引:0,他引:2  
We analyze the local and remote impacts of climate change on the hydroclimate of the Amazon and La Plata basins of South America (SA) in an ensemble of four 21st century projections (1970–2100, RCP8.5 scenario) with the regional climate model RegCM4 driven by the HadGEM, GFDL and MPI global climate models (GCMs) over the SA CORDEX domain. Two RegCM4 configurations are used, one employing the CLM land surface and the Emanuel convective schemes, and one using the BATS land surface and Grell (over land) convection schemes. First, we find considerable sensitivity of the precipitation change signal to both the driving GCM and the RegCM4 physics schemes (with the latter even greater than the first), highlighting the pronounced uncertainty of regional projections over the region. However, some improvements in the simulation of the annual cycle of precipitation over the Amazon and La Plata basins is found when using RegCM4, and some consistent change signals across the experiments are found. One is a tendency towards an extension of the dry season over central SA deriving from a late onset and an early retreat of the SA monsoon. The second is a dipolar response consisting of reduced precipitation over the broad Amazon and Central Brazil region and increased precipitation over the La Plata basin and central Argentina. An analysis of the relative influence on the change signal of local soil-moisture feedbacks and remote effects of Sea Surface Temperature (SST) over the Niño 3.4 region indicates that the former is prevalent over the Amazon basin while the latter dominates over the La Plata Basin. Also, the soil moisture feedback has a larger role in RegCM4 than in the GCMs.  相似文献   

11.
12.
The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970–1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020–2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070–2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.  相似文献   

13.
Paleoclimatic reconstructions for the Mid-Holocene, Eemian, Mid-Pliocene and the Last Glacial Maximum are used to test the paleoanalog hypothesis and develop a regional climate change scenario based on a linear scaling by one parameter - the mean Northern Hemispheric temperature change with respect to present, ΔT NH. The empirical verification of the paleoanalog hypothesis is extended to a cold epoch for zonal means and to regional distributions of temperature in warm epochs. The best agreement among the scaled paleoanomalies from different epochs is obtained if the seasonal temperature anomalies are scaled with ΔT NH of the corresponding season. Preferential areas are identified where the paleoanalog hypothesis works relatively well; these areas coincide with the areas of the most pronounced warming. It is shown that the geographical distributions of the winter temperature anomalies over land in the paleodata are similar to those in the 1980–1990 period. From the three warm epochs, a paleodata-based scenario is deduced for the spatial distribution of temperature in a future climate, on the scale of continents. The conditions under which scenarios based on paleodata can be applied are discussed.  相似文献   

14.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   

15.
Theoretical and Applied Climatology - Reliable knowledge of the near-future climate change signal of extremes is important for adaptation and mitigation strategies. Especially compound extremes,...  相似文献   

16.
Theoretical and Applied Climatology - The global climate models (GCMs) of Coupled Model Intercomparison Project phase 6 (CMIP6) were used for spatiotemporal projections of precipitation and...  相似文献   

17.
A suggestion for mapping the SRES illustrative scenarios onto the new scenarios framework of representative concentration pathways (RCPs) and shared socio-economic pathways (SSPs) is presented. The mapping first compares storylines describing future socio-economic developments for SRES and SSPs. Next, it compares projected atmospheric composition, radiative forcing and climate characteristics for SRES and RCPs. Finally, it uses the new scenarios matrix architecture to match SRES scenarios to combinations of RCPs and SSPs, resulting in four suggestions of suitable combinations, mapping: (i) an A2 world onto RCP 8.5 and SSP3, (ii) a B2 (or A1B) world onto RCP 6.0 and SSP2, (iii) a B1 world onto RCP 4.5 and SSP1, and (iv) an A1FI world onto RCP 8.5 and SSP5. A few other variants are also explored. These mappings, though approximate, may assist analysts in reconciling earlier scenarios with the new scenario framework.  相似文献   

18.
19.
The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December–March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum’s (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit regional decision makers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号