首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Warming and drying trends on the Tibetan Plateau (1971–2005)   总被引:1,自引:0,他引:1  
Annual and seasonal trends in maximum and minimum temperatures, precipitation and vapour pressure deficit (VPD) were examined with the goal of understanding trends in temperature and moisture across the Tibetan Plateau, using meteorological data (1971–2005) collected at 63 stations. Trends in pan evaporation (PE; 1971–2001, 68 stations) and runoff (1971–2002) in the headwater of the Yellow River were also analysed. Positive trends in maximum and minimum temperatures were observed across the Tibetan Plateau. The highest increases were observed during winter, with results from the majority of stations statistically significant at the 95% level. A decrease trend in diurnal temperature range (DTR) was also observed. Trends in annual and seasonal precipitation and VPD were positive, while the trend in PE was negative. However, the increase in precipitation was not as pronounced as the increase in temperature. Although PE decreased during the time series, actual evaporation probably increased because of the warming across the Tibetan Plateau, where the annual potential water loss measured as PE is three to four times the annual water supply by precipitation. Warming was expected to increase evapotranspiration, causing more water vapour to escape into the atmosphere, thus counteracting or even exceeding the slight increase in precipitation. The increases in annual and seasonal VPD trends indicated a drying tendency and were further substantiated by the observed decrease in runoff in the headwater catchment of the Yellow River. The results provided insight into recent climatic changes across the Tibetan Plateau.  相似文献   

2.
In order to explore the trends in sunshine duration in the low-latitude belt of South China, long-term sunshine duration, total clouds, low clouds, and visibility were investigated for the period 1961?C2005. The results show significant declines in sunshine duration, occurring on the average of ?3.2% and ?2.8% per decade under all-sky and clear-sky conditions, respectively. It is noted that increased air aerosol loading due to rapid socio-economic development is the drive behind the sharp declines in sunshine duration in the study area. Though cloud is the primary regulator of sunshine duration under all-sky conditions, sunshine is strongly correlated with visibility under clear-sky conditions. Relational analysis between sunshine and cloud amount suggests 0.4% change in clouds per decade, which is well in agreement with the trend of decline in sunshine duration under all-sky conditions in the study area. Increasing low-cloud opacity could be the primary factor driving the decline in sunshine duration in the low-latitude belt of South China.  相似文献   

3.
Trends and uncertainties of surface air temperature over the Tibetan Plateau(TP)are evaluated by using observations at 100 meteorological stations during the period 1951–2013.The sampling error variances of gridded monthly data are estimated for every month and every grid box of data.The gridded data and their sampling error variances are used to calculate TP averages,their trends,and associated uncertainties.It is shown that large sampling error variances dominate northern and western TP,while small variances appear over southern and eastern TP.Every month from January to December has a positive linear trend during the study period.February has the largest trend of 0.34±0.18°C(10 yr)~(–1),and April the smallest at 0.15±0.11°C(10 yr)~(–1).The uncertainties decrease steadily with time,implying that they are not large enough to alter the TP warming trend.  相似文献   

4.
Areview of the effects of theTibetan Platean on circulation features over the plateau and its surrounding areas has been made, with a special emphasis upon the monsoon circulations in South Asin and East Asia. This includes estimates of heat sources, dynamic and thermal effects of the plateau, adn effects of the plateau on summer and winter monsoons. Major progresses made in this aspect by Chinese meteorologists have been specifically described and are compared with the achievements made by the meteorologists of other countries.  相似文献   

5.
Trends and uncertainties of surface air temperature over the Tibetan Plateau (TP) are evaluated by using observations at 100 meteorological stations during the period 1951–2013. The sampling error variances of gridded monthly data are estimated for every month and every grid box of data. The gridded data and their sampling error variances are used to calculate TP averages, their trends, and associated uncertainties. It is shown that large sampling error variances dominate northern and western TP, while small variances appear over southern and eastern TP. Every month from January to December has a positive linear trend during the study period. February has the largest trend of 0.34 ± 0.18°C (10 yr)–1, and April the smallest at 0.15 ± 0.11°C (10 yr)–1. The uncertainties decrease steadily with time, implying that they are not large enough to alter the TP warming trend.  相似文献   

6.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

7.
NCEP–NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (<Q1>) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan–Chongqing region. Results show that the vertical advection of <Q1> over the central TP is a major factor affecting summer precipitation in the Sichuan–Chongqing region. When the vertical advection of <Q1> over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weakens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan–Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sichuan–Chongqing region, leading to significant precipitation. In contrast, when the vertical advection of <Q1> over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan–Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan–Chongqing region is weakened, resulting in less precipitation.  相似文献   

8.
Existing studies contend that latent heating(LH) will replace sensible heating(SH) to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV) after it moves off the Tibetan Plateau(TP). However, in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH) conditions rapidly change. How LH gradually replaces SH to become the dominant factor in the developme...  相似文献   

9.
Chemical compositions of precipitation samples collected from a remote and high elevation site (Nam Co Station, 30°46.44??N, 90°59.31??E, 4730?m?a.s.l.) in central Tibetan Plateau (TP, hereafter) from August 2005 to August 2009 are investigated. During the study period, Ca2+ and HCO 3 - have the highest concentrations among ions and are the dominant cation and anion in precipitation, taking 27.46?% and 30.84?% to the total ions respectively. Empirical Orthogonal Functions (EOFs) analyses reveal that crustal aerosol inputs significantly contributed to the loading of Ca2+, Mg2+, SO 4 2- and HCO 3 - in precipitation, while lake salt plays a major source of K+ and Cl-. Seasonal variations of ionic wet deposition fluxes show high values during monsoon seasons due to large precipitation amount. Among the cations, annual Ca2+ flux is the largest (86.26?eq hm?2), Na+ and NH 4 + fluxes are following. Among anions, HCO 3 - has the highest flux (98.66?eq hm?2) while that of NO 3 - is the lowest. Annual wet deposition of nitrogen has varied considerably with the average value of 0.70?kg?ha?1 a?1 at Nam Co Station. About 80?% of total nitrogen flux occurs during the monsoon seasons when precipitation is concentrated, in which NH 4 + and NO 3 - contributed to 61?% and 39?% of the total nitrogen deposition. Thus, our ionic concentrations and wet deposition fluxes in precipitation can provide a useful dataset to assess atmospheric environment and its impacts on ecosystem in the inland TP.  相似文献   

10.
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.  相似文献   

11.
考虑到赤道中东太平洋地区(CETP)具有重要的气候影响,以及显著的季节性变率,本文利用可精确描述风向变化的动态标准化季节变率(DNS)方法,分析了该区域上对流层大气环流。结果发现该区域大气环流在冬季和夏季之间存在着类似于经典季风的、明显的季节性反转现象。以此为基础本文提出了赤道中东太平洋上对流层季风的概念,将传统的低对流层季风区扩展到了上对流。  相似文献   

12.
Since the 1990s, the Qinghai–Tibetan Plateau(QTP) has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground. A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG) has long been recognized. Still, a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will b...  相似文献   

13.
A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau (EPTP) in August 2020. Using hourly rain gauge records and the ERA5 reanalysis dataset, we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data. This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP. This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes. The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall. An amplification effect of the topography was observed, with the precipitation over the EPTP showing a more significant change with terrain height in August 2020. A circulation analysis showed that cold (warm) anomalies existed over the north (south) of approximately 35°N compared with those in the years when the southern EPTP received more rain. The western Pacific subtropical high was more intense and extended to the west, and the low-level cold air from the north was more active. The enhanced low-level southerly winds on the periphery of the subtropical high injected warm, moist air further north than the climatological mean. These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain.  相似文献   

14.
Recent studies have demonstrated a persistent decreasing trend in the spring sensible heat(SH) source over the Tibetan Plateau(TP) during the past three decades. By comparing simulations from nine state-of-the-art atmospheric general circulation models(AGCMs) driven by historical forcing fields with both observational data and five reanalysis datasets, the authors found that the AGCMs are unable to reproduce the change in the SH flux over the TP. This deficiency arises because the observed decreasing trend in SH flux depends primarily on the change in surface wind speed according to the bulk formula, whereas in the models it is also influenced largely by changes in the land-air temperature difference related to the systematic cold bias. In addition, an obvious discrepancy exists in other aspects of the diabatic heating simulated by the models, suggesting that a significant improvement is required in the physical schemes associated with land surface processes and diabatic heating over the complicated topography.  相似文献   

15.
Global solar radiation is of great significance to the balance of ground surface radiation, the energy exchange between the Earth’s surface and atmosphere, and the development of weather and climate systems in various regions. In this study, the monthly global radiation recorded at 23 stations over the Qinghai–Tibetan Plateau (QTP) was utilized to estimate global solar radiation (Q) from sunshine duration and to obtain improved fits to the variation coefficients of the monthly Angström–Prescott model (APM). The modeling results were evaluated by calculating the statistical errors, including mean bias error, mean absolute error, root mean square error, and mean relative error. We demonstrate that the monthly Q values can be predicted accurately by APM over the QTP. We also assess the variations of Q values at 116 meteorological stations by APM over the QTP during 1961–2000. The analysis shows that the annual mean sunshine duration amounted to more than 3,000 h over the whole plateau, implying promising prospects for economic applications of solar energy. During the past 40 years, the mean global solar radiation has been relatively high in the western QTP, extending northward to the Inner Mongolian Plateau. Although its decadal variations in the QTP and surrounding regions were inconsistent, the anomaly values of global solar radiation were generally positive during the 1960s and 1970s, indicating that the QTP’s global solar radiation has increased during those periods. The anomaly values were negative during the 1980s and 1990s, showing that the plateau’s global solar radiation has decreased during those periods. Global solar radiation over the QTP is negatively proportional to latitude but positively proportional to altitude and relative sunshine duration. Three factors, the sunshine duration, latitude, and altitude, exert great influence on global surface radiation, of which sunshine duration is most significant. A high-variation-coefficient zone of global solar radiation occurred in the western part of the QTP but, on average, the variation coefficient of the plateau’s global solar radiation was only 0.031, suggesting that the variation in global radiation was relatively stable over the whole QTP.  相似文献   

16.
We present a Palmer Drought Severity Index reconstruction (r = 0.61, P < 0.01) from 1440 to 2007 for the southeastern Tibetan Plateau, based on tree rings of the forest fir (Abies forrestii). Persistent decadal dry intervals were found in the 1440s–1460s, 1560s–1580s, 1700s, 1770s, 1810s, 1860s and 1980s, and the extreme wet epochs were the 1480s–1490s, 1510s–1520s, 1590s, 1610s–1630s, 1720s–1730s, 1800s, 1830s, 1870s, 1930s, 1950s and after the 1990s. Comparisons of our record with those identified in other moisture related reconstructions for nearby regions showed that our reconstructed droughts were relatively consistent with those found in other regions of Indochina, suggesting similar drought regimes. Spectral peaks of 2.3–5.5 years may be indicative of ENSO activity, as also suggested by negative correlations with SSTs in the eastern equatorial and southeastern Pacific Ocean. Significant multidecadal spectral peaks of 29.2–40.9 and 56.8–60.2 years were identified. As indicated by the spatial correlation patterns, the decadal-scale variability may be linked to SST variations in the northern Pacific and Atlantic Oceans.  相似文献   

17.
Based on the 4 times daily 0.75° × 0.75° ERA-Interim data, the structural evolution of a Qinghai–Tibetan Plateau horizontal (east–west-oriented) shear line (TSL) during 15–19 August 2015 and the effect of diabatic heating on its evolution were analyzed. The results show that the TSL possessed a vertical thickness of up to 1.5 km (approximately 600–450 hPa), and was baroclinic in nature. Weak ascending motions occurred near the TSL, accompanied with more significant gradients in dew point temperature than in temperature. The TSL was characterized by diurnal variations in its appearance and structure. It was relatively full in shape (broken) and was the lowest (highest) in vertical extent at 0000 (1800) UTC, and veered clockwise (anticlockwise) during 0000–0600 (1200–1800) UTC. When the north–south span of the TSL increased, it was prone to fracturing; and it disappeared when the dew point temperature gradients to its either side decreased. When the TSL moved northward (southward), its western (eastern) section broke up, while the eastern (western) section inclined to regenerate or merge. The TSL tended to move towards the positive vorticity areas with significant increases in vorticity. When the positive vorticity center moved down, the height of TSL decreased. Further analysis shows that the plateau surface heating dominated the vorticity attribute of the TSL and its movement, with different contributions from local variation, horizontal advection, and vertical advection of the diabatic heating to the TSL at different heights.  相似文献   

18.
This study analyzes the mean maximum and minimum temperature trends on a monthly, seasonal, and annual timescale by applying various statistical tools to data from 476 Spanish weather stations during the period between 1961 and 2006. The magnitude of the trends was derived from the slopes of the regression lines using the least squares method, and the nonparametric Mann–Kendall test was used to determine the statistical significance of the trends. Temperature significantly increased in over 60% of the country in March, June, spring, and summer in the case of maximum temperatures and in March, May, June, August, spring, and summer for minimum temperatures. At the annual resolution, temperatures significantly increased in over 90% of Spain with a rise of around 0.3°C/decade. The maximum temperature increased at a higher rate than the minimum temperature from midsummer to early winter as well as in winter, spring, and summer and also on an annual basis.  相似文献   

19.
Qin  Gexia  Adu  Benjamin  Li  Chunbin  Wu  Jing 《Theoretical and Applied Climatology》2022,148(3-4):931-942
Theoretical and Applied Climatology - Studying grassland vegetation growing seasons’ spatial patterns and their environmental controls are crucial to promoting vegetation ecological...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号