首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Tertiary volcanic rocks of the central and the eastern parts of the Oman Mountains consist mainly of basanites with abundant upper mantle ultramafic xenoliths. The lavas are alkaline (42–43 wt.% SiO2; 3.5–5.5 wt.% Na2O + K2O). They include primitive (11–14 wt.% MgO) features with strong OIB-like geochemical signatures. Trace element and Sr–Nd isotope data for the basanites suggest mixing of melts derived from variable degrees of melting of both garnet- and spinel lherzolite-facies mantle source. The associated xenolith suite consists mainly of spinel and Cr-bearing diopside wehrlite, lherzolite and dunite with predominantly granuloblastic textures. No significant difference in chemistry was found between the basanites and xenoliths from the central and eastern Oman Mountains, which indicate a similar mantle source. Calculated oxygen fugacity indicates equilibration of the xenoliths at − 0.43 to − 2.2 log units above the fayalite–magnetite–quartz (FMQ) buffer. Mantle xenolith equilibration temperatures range from 910–1045 + 50 °C at weakly constrained pressures between 13 and 21 kbar. Xenolith data and geophysical studies indicate that the Moho is located at a depth of  40 km. A geotherm substantially hotter (90 mW m− 2) than the crust–mantle boundary (45 mW m− 2) is indicated and probably relates to tectonothermal events associated with the local and regional Tertiary magmatism. The petrogenesis of the Omani Tertiary basanites is explained by partial melting of an asthenospheric mantle protolith during an extension phase predating opening of the Gulf of Aden and plume-related alkaline volcanic rocks.  相似文献   

2.
The age of pseudotachylite formation in the crustal-scale Cauvery Shear Zone system of the Precambrian Southern Granulite Terrain (South India) has been analyzed by laser-probe 40Ar–39Ar dating. Laser spot analyses from a pseudotachylite from the Salem–Attur shear zone have yielded ages ranging from 1214 to 904 Ma. Some evidence for the presence of excess Ar is indicated by the scatter of ages from this locality. The host gneiss preserves Palaeoproterozoic Rb–Sr whole rock–biotite ages (2350 ± 11 to 2241 ± 11 Ma). A mylonite in the Koorg shear, ca. 200 km to the north, yielded an age of 895 ± 17 Ma the consistency of the age distribution from spot analyses precludes the presence of significant excess Ar. Despite published evidence for the growth of high-grade minerals within some components of the Cauvery Shear Zone during the Pan-African event (700–550 Ma), the pseudotachylites in this study provide no evidence for Pan-African formation. Instead they document the first evidence for Mesoproterozoic tectonism in the Cauvery Shear Zone system, thus prompting a review of the correlation between the Cauvery Shear Zone system and the large-scale shear zones located elsewhere in eastern Gondwana.  相似文献   

3.
Small rivers (≤ 100 km length) are likely to drain fewer rock types. Therefore, their solutes and sediments are good indicators of weathering environments typical of their basins and help constraining the nature of their source rocks. To understand this, the texture, mineralogy, major and trace element compositions of the sediments deposited by the River Hemavati, a northern upland tributary of the Cauvery River in southern India, are analyzed and discussed.

The Hemavati sediments are overall of fine sand size (mean 2–3), and have high concentrations of FeO (≤ 7 wt.%), TiO2 (≤ 1.2 wt.%), Cr (≤ 350 ppm) and Ni (≤ 125 ppm). Major and trace element distribution call for a binary source for the sediments, and particularly point to contrasting climatic conditions of their provenances. The source areas in the upstream and downstream parts are exposed to sub-humid high relief and sub-arid low relief conditions, respectively, with distinct weathering characteristics. The CIA values (85–48) decrease from near the source to downstream, suggesting that the downstream rain-shadow part of the catchment suffered only minor chemical weathering.

On the other hand, the REE distribution in the Hemavati sediments indicates contrasting lithologies in their provenance, and is not controlled by chemical weathering. On the basis of REE patterns, the sediments are divided into two compositional groups. The Type 1 sediments have a REE chemistry similar to the upper continental crust, and have been derived from the > 3.2 Ga composite peninsular gneisses occurring in the low-lying, semi-arid Mysore Plateau. The Type 2 sediments, however, have dominantly intermediate to mafic granulite contributions from the tectonically uplifted Western Ghats, weathered under sub-humid conditions. High concentrations of FeO, TiO2, Cr and Ni in the sediments suggest mafic-dominated source lithologies in the upper catchment, a feature also confirmed by field observations and petrographic study.  相似文献   


4.
Abstract The Red River, Manitoba, is a mud‐dominated, meandering stream that occupies a shallow valley eroded into a clay plain. The valley‐bottom alluvium is the product of incision and lateral migration of river meanders. As revealed by a transect of five boreholes located across the floodplain at each of two successive river meanders, the alluvial deposits range from about 15 to 22 m thick and are composed primarily of silt. Sedimentary structures in the cores are weakly defined and consist mostly of beds of massive silt, thick (>0·4 m) massive silt and disturbed silt. Interlaminated sand and silt, and sand beds form relatively minor deposits, principally within the lower half of the alluvium, and thin beds of medium‐coarse sand and pea gravel can be present locally within the lower metre of the alluvium. The alluvium is interpreted to consist of overbank deposits from 0 to 2–3 m depth, oblique accretion deposits from 2–3 to 8–12 m depth and oblique accretion and/or channel deposits from 8–12 m to the base of the sequence. The massive bedding within the oblique accretion deposits is interpreted to represent the remnants of couplet deposits that were initially composed of interbedded, muddy silt and sand‐sized silt aggregates, as is consistent with the contemporary bank sedimentation. The post‐depositional disintegration and/or compaction of the aggregates has caused the loss of the sand‐sized texture. The disturbed silt beds are interpreted as slump structures caused by large‐scale rotational failures along the convex banks. Overall, the Red River represents a portion of a continuum of muddy, fine‐grained streams; where the alluvium lacks a distinct coarse unit, oblique accretion deposits form a majority of the floodplain, and large‐scale slump features are present.  相似文献   

5.
The Hennisdijk fluvial system in the central Rhine-Meuse delta is an abandoned Rhine distributary that was active on a wide floodplain from 3800 to 3000 years BP . Cross-sectional geometry, lithological characteristics and planform patterns of the channel-belt deposits indicate lateral migration of the Hennisdijk palaeochannel. Channel-belt deposits are around 10 m thick and 200–400 m wide. A gravelly facies near the base of the channel-belt deposits represents channel-lag and lower point-bar deposits. The axis of the channel belt is dominated by a sandy facies (medium and coarse sand), showing an overall fining upward trend with multiple cycles. This facies is interpreted as lower and middle point-bar deposits. The sandy facies is capped by a muddy facies, which is 1–2 m thick near the axis of the channel belt and thickens to 5–6 m along the margins. It laterally interfingers with the sandy facies that occurs near the channel-belt axis, but it has sharp, erosive outer contacts marking the edges of the channel belt. The muddy facies comprises inclined heterolithic stratification (IHS) (fine/medium sand–mud couplets) in its upper part. The relatively thin muddy facies with IHS that occurs near the channel-belt axis is interpreted as upper point-bar deposits with lateral accretion surfaces, formed under marine influence. Along the margins of the channel belt the muddy facies consists of thick, fairly homogeneous, successions of mud with variable sand content, and fine sand. Based on facies geometry and position, this part of the muddy facies is interpreted as counterpoint deposits, formed along the upstream limb of the concave bank of a channel bend. Counterpoint accretion seems to have been associated with the confined nature of the channel belt, which was the result of low stream power (4·5–7·8 W m−2, based on reconstructions of palaeodischarge and channel slope) and cohesive bank material, i.e. clayey floodbasin deposits with intercalated peat beds occurring next to the channel belt. In the literature, counterpoint accretion is mostly reported from alluvial valleys, where meandering is confined by limited floodplain width, whereas muddy lateral accretion surfaces are commonly reported from much wider marine-influenced floodplains. The present study shows juxtaposition of both forms of muddy channel deposits in a low-energy, wide coastal plain setting, where preservation potential is considerable.  相似文献   

6.
Two M6+ events occurred 15–20 km apart in central Greece on April 20 and April 27, 1894. We identify the April 27, 1894 rupture (2nd in the sequence) with the Atalanti segment of the Atalanti Fault Zone because of unequivocal surface rupturing evidence reported by Skouphos [Skouphos, T., 1894. Die swei grossen Erdbeben in Lokris am 8/20 und 15/27 April 1894. Zeitschrift Ges. Erdkunde zu Berlin, vol. 24, pp. 409–474]. Coulomb stress transfer analysis and macroseismic evidence suggest that the April 20, 1894 event (1st in the sequence) may be associated with the Martinon segment of the same fault zone. Our stress modelling suggests that this segment may have ruptured in an M = 6.4 event producing a 15-km long rupture which transferred 1.14 bar in the epicentral area of the April 27th, 1894 event, thus triggering the second M = 6.6 earthquake along the Atalanti segment and producing a 19-km long rupture. We also examined three alternative fault sources for the first event; however, all these produce smaller stress stresses for triggering the second event. The proposed slip model for the second earthquake is capable of producing coastal subsidence of the order of centimetres to decimetres, which fits the geological data. The 1894 earthquake sequence was followed by a difference in the timing of subsequent M > 5 events in each of the “relaxed” areas (stress shadows; a negative change in Coulomb failure stress > − 0.6 bar), which terminated between 22–37 years (north) and 80 years (south).  相似文献   

7.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   


8.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

9.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

10.
Jean-Luc Epard  Albrecht Steck   《Tectonophysics》2008,451(1-4):242-264
A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of > 90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103–50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of > 90 km (> 27 kbar) and temperatures of 500 to 600 °C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 °C/km. An intense schistosity with a W–E oriented stretching lineation L1 and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata–Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L2 and L3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.  相似文献   

11.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

12.
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones.  相似文献   

13.
In order to study the lithospheric structure in Romania a 450 km long WNW–ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300–1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0–5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of sedimentary rocks. The North Dobrogea crust reaches a thickness of about 44 km and is probably composed of thick Eastern European crust overthrusted by a thin 1–2 km thick wedge of the North Dobrogea Orogen.  相似文献   

14.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   

15.
Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤ 2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.

The MgO of the gabbronorites and gabbros ranges  7–21 wt.%. Those with MgO > 10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO < 10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s  83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have  3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine  Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.

Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at < 1 kbar P. Highly evolved mineral Mg#s, < 75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene geobarometry suggests < 300 bar P. Open-textured dunite represents olivine-melt mush, precursor to vertical olivine-rich bodies (as in Kilauea Iki). Its Fo83.5 identifies the most primitive lake magma as  8.3 wt.% MgO. Mass balancing and MELTS show that such a magma could have yielded both ferrogabbro and diorite by ≥ 50% fractional crystallization, but under different fO2: < FMQ (250 bar) led to diorite, and FMQ (250 bar) yielded ferrogabbro. These segregation veins, documented as similar to those of Kilauea, testify to appreciable volumes of ‘rhyolitic’ liquid forming in oceanic environments. Namely, SiO2-rich veins are intrinsic to all shields that reached caldera stage to accommodate various-sized cooling, differentiating lava lakes.  相似文献   


16.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   

17.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

18.
The Ljusdal Batholith (LjB) is a major component of the central Svecofennian Domain in Sweden. It is separated from the Bothnian Basin to the north by the 1.82–1.80 Ga crustal-scale Hassela Shear Zone (HSZ). The LjB has emplacement ages of 1.86–1.84 Ga, is mainly alkali-calcic, metaluminous, has Nd values between − 0.3 and + 1.2 and was formed in a magmatic arc setting.

During the Svecokarelian orogeny the LjB was affected by at least three fold episodes. Large-scale folded screens of migmatised metasedimentary rocks occur in the eastern part of the batholith, and to the north of the HSZ, there is a 50 km wide diatexite belt. The Transition Belt (TrB), consisting of 1.88–1.85 Ga granitoids, is located at the northwestern extension of this belt. A calc-alkaline and peraluminous composition combined with negative Nd values (− 1.7 to − 0.8) indicates a large proportion of metasediments in the source for these granitoids.

U–Pb SIMS data on zircon rims from migmatites and leucogranites to the north and east of LjB yield ages of 1.87–1.86 Ga, i.e. coeval with the granitoids of the LjB and the TrB. There is thus a close relationship between the LjB, the TrB and the migmatites in both space and time. Syn-migmatitic shearing along the HSZ indicates that a proto-HSZ was initiated already at c. 1.86 Ga, and the location of the proto-HSZ is inferred to be controlled by two older nuclei present in the lower parts of the crust. As crustal-scale shear zone systems are known to act as ascent pathways for sheet-like flow in active orogenies the TrB may represents accumulations of melts that were attracted and extracted by the proto-HSZ and intruded in a block that was not pervasively affected by subsequent shear along the HSZ.

An active continental margin setting for the LjB implies subduction at c. 1.86 Ga, and provides a heat source for both the migmatites and the TrB.

A later migmatisation at 1.82 Ga has been recorded to the south of the HSZ. Within the LjB the 1.82 Ga stromatic migmatites are folded by F2 folds, and the fabric is truncated by 1.80 Ga pegmatites.  相似文献   


19.
The Pine Canyon caldera is a small (6–7 km diameter) ash-flow caldera that erupted peralkaline quartz trachyte, rhyolite, and high-silica rhyolite lavas and ash-flow tuffs about 33–32 Ma. The Pine Canyon caldera is located in Big Bend National Park, Texas, USA, in the southern part of the Trans-Pecos Magmatic Province (TPMP). The eruptive products of the Pine Canyon caldera are assigned to the South Rim Formation, which represents the silicic end member of a bimodal suite (with a “Daly Gap” between 57 and 62 wt.% SiO2); the mafic end member consists primarily of alkali basalt to mugearite lavas of the 34–30 Ma Bee Mountain Basalt. Approximately 60–70% crystallization of plagioclase, clinopyroxene, olivine, magnetite, and apatite from alkali basalt coupled with assimilation of shale wall rock (Ma/Mc = 0.3–0.4) produced the quartz trachyte magma. Variation within the quartz trachyte–rhyolite suite was the result of 70% fractional crystallization of an assemblage dominated by alkali feldspar with subordinate clinopyroxene, fayalite, ilmenite, and apatite. High-silica rhyolite is not cogenetic with the quartz trachyte–rhyolite suite, and can be best explained as the result of  5% partial melting of a mafic granulite in the deep crust under the fluxing influence of fluorine. Variation within the high-silica rhyolite is most likely due to fractional crystallization of alkali feldspar, quartz, magnetite, biotite, and monazite. Lavas and tuffs of the South Rim Formation form A-type rhyolite suites, and are broadly similar to rock series described in anorogenic settings both in terms of petrology and petrogenesis. The Pine Canyon caldera is interpreted to have developed in a post-orogenic tectonic setting, or an early stage of continental rifting, and represents the earliest evidence for continental extension in the TPMP.  相似文献   

20.
Here new mineralogical data is presented on the occurrence of K-feldspar in granulite-facies metagabbronorite xenoliths found in recent alkaline lavas from Western Sardinia, Italy. The xenoliths originated from the underplating of variably evolved subduction-related basaltic liquids, which underwent cooling and recrystallisation in the deep crust (T = 850–900 °C, P = 0.8–1.0 GPa). They consist of orthopyroxene + clinopyroxene + plagioclase porphyroclasts (An = 50–66 mol%) in a granoblastic, recrystallised, quartz-free matrix composed of pyroxene + plagioclase (An = 56–72 mol%) + Fe–Ti oxides ± K-feldspar ± biotite ± fluorapatite ± Ti-biotite. Texturally, the K-feldspar occurs in a variety of different modes. These include: (1) rods, blebs, and irregular patches in a random scattering of plagioclase grains in the form of antiperthite; (2) micro-veins along plagioclase–plagioclase and plagioclase–pyroxene grain rims; (3) myrmekite-like intergrowths with Ca-rich plagioclase along plagioclase–plagioclase grain boundaries; and (4) discrete anhedral grains (sometimes microperthitic). The composition of each type of K-feldspar is characterized by relatively high albite contents (16–33 mol%). An increasing anorthite content in the plagioclase towards the contact with the K-feldspar micro-vein and myrmekite-like intergrowths into the K-feldspar along the plagioclase–K-feldspar grain boundary are also observed. Small amounts of biotite (TiO2 = 4.7–6.5 wt.%; F = 0.24–1.19 wt.%; Cl = 0.04–0.20 wt.%) in textural equilibrium with the granulite-facies assemblage is present in both K-feldspar-bearing and K-feldspar-free xenoliths. These K-feldspar textures suggest a likely metasomatic origin due to solid-state infiltration of KCl-rich fluids/melts. The presence of such fluids is supported by the fluorapatite in these xenoliths, which is enriched in Cl (Cl = 6–50% of the total F + Cl + OH). These lines of evidence suggest that formation of K-feldspar in the mafic xenoliths reflects metasomatic processes, requiring an external K-rich fluid source, which operated in the lower crust during and after in-situ high-T recrystallisation of relatively dry rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号