首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shallow crustal magma reservoirs beneath the summit of Kilauea Volcano and within its rift zones are linked in such a way that the magma supply to each can be estimated from the rate of ground deformation at the volcano's summit. Our model builds on the well-documented pattern of summit inflation as magma accumulates in a shallow summit reservoir, followed by deflation as magma is discharged to the surface or into the rift zones. Magma supply to the summit reservoir is thus proportional to summit uplift, and supply to the rift zones is proportional to summit subsidence; the average proportionality constant is 0.33 × 106 m3/γrad. This model yields minimum supply estimates because it does not account for magma which escapes detection by moving passively through the summit reservoir or directly into the rift zones.Calculations suggest that magma was supplied to Kilauea during July 1956– April 1983 at a minimum average rate of 7.2 × 106 m3/month. Roughly 35% of the net supply was extruded; the rest remains stored within the volcano's east rift zone (55%) and southwest rift zone (10%). Periods of relatively rapid supply were associated with the large Kapoho eruption in 1960 and the sustained Mauna Ulu eruptions in 1969–1971 and 1972–1974. Bursts of harmonic tremor from the mantle beneath Kilauea were also unusually energetic during 1968–1975, suggesting a close link between Kilauea's deep magma supply region and shallow storage reservoirs. It remains unclear whether pulses in magma supply from depth give rise to corresponding increases in shallow supply, or if instead unloading of a delicately balanced magma transport system during large eruptions or intrusions triggers more rapid ascent from a relatively constant mantle source.  相似文献   

2.
A three-dimensional model has been used to estimate the location and dimensions of the eruptive fissure for the 24–29 September 1971 eruption along the southwest rift zone of Kilauea volcano, Hawaii. The model is an inclined rectangular sheet embedded in an elastic half-space with constant displacement on the plane of the sheet. The set of best model parameters suggests that the sheet is vertical, extends from a depth of about 2 km to the surface, and has a length of about 14 km. Because this sheet intersects the surface where eruptive vents and extensive ground cracking formed during the eruption, this sheet probably represents the conduit for erupted lava. The amount of displacement perpendicular to the sheet is about 1.9 m, in the middle range of values measured for the amount of opening across the September 1971 eruptive fissure. The thickness of the eruptive fissure associated with the January 1983 east rift zone eruption was determined in an earlier paper to be 3.6 m, about twice the thickness determined here for the September 1971 eruption. Because the lengths (12 km for 1983 and 14 km for 1971) and heights (about 2 km) of the sheet models derived for the January 1983 and September 1971 rift zone eruptions are nearly identical, the greater thickness for the January 1983 eruptive fissure implies that the magma pressure was about a factor of two greater to form the January 1983 eruptive fissure. Because the September 1971 and January 1983 eruptive fissures extent to depths of only a few kilometers, the region of greatest compressive stress produced along the volcano's flank by either of these eruptive fissures would also be within a few kilometers of the surface. Previous work has shown that rift eruptions and intrusions contribute to the buildup of compressive stress along Kilauea's south flank and that this buildup is released by increased seismicity along the south flank. Because south flank earthquakes occur at significantly greater depths, i.e., from 5 to 13 km, than the vertical extent of the 1971 and 1983 eruptiv fissures, the depth of emplacement of these eruptive fissures cannot be the main factor in controlling the hypocentral depths of south flank earthquakes. Two possible explanations for the occurrence of south flank earthquakes in the depth range of 5–13 km are (1) a deeper pressure source, possibly related to deeper magma storage within the rift zone, and (2) a lowstrength region located between 5 and 13 km beneath Kilauea's south flank, possibly at the interface between oceanic sediments and the base of the Hawaiian volcanics.  相似文献   

3.
A detailed investigation of earthquake locations and focal mechanisms for swarms associated with intrusive events at Kilauea volcano, Hawaii, further illuminates the relationships among stress state, faulting, and magma transport. We determine the earthquake locations and mechanisms using a three-dimensional crustal model to improve their accuracy and consistency. Swarms in Kilauea's upper east and southwest rift zones, from the years 1980 through 1982, provide clear evidence for the propagation and/or dilation of dikes. Focal mechanisms are predominantly strike-slip, and the faulting and inferred dike orientations can be interpreted quite consistently in terms of the model ofHill (1977). Stresses induced by the summit magma reservoir system strongly control faulting and magma transport in the rift zones close to the summit.  相似文献   

4.
The theory of crystal size distribution (CSD theory) is based on a steady-state population balance that monitors the flux of crystals growing into and out of specificed size categories in precipitating solutions. The conservation equation describing this balance permits crystal growth and nucleation rates to be determined directly from crystal size distribution data. In this investigation, it is shown that CSD analysis can alternatively be used to calculate the residence time of crystals in the system - or in volcanologic terms, the magma storage time prior to eruption - if the characteristic crystal growth rate can be independently determined or estimated. The crystal size data needed for storage time determinations are easily obtained from thin sections of glassy eruption samples and the mathematical calculations are relatively simple. Analysis of the errors inherent in this new technique predicts storage estimates accurate to within an order of magnitude.  相似文献   

5.
Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200–400 years old: 50%, 15, 14.3: (III) 400–750 years old: 20%, 54, 6.6; (IV) 750–1500 years old: 5%, 37, 20.8; (V) 1500–3000 years old: <1%, 1, unknown. At least 4.5–6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.  相似文献   

6.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

7.
Repeated electronic distance measurements across Kilauea Caldera with Tellurometers and Geodimeter show definite horizontal expansion related to the vertical uplift and outward tilting of the summit prior to an eruption, and contraction during and after a flank eruption. Measurements started in October 1964, along a 3098 meter line between Uwekahuna and Keanakakoi, indicate a relatively uniform lengthening of 12 centimeters during the interval October 22, 1964 to March 1, 1965. Rapid shortening of the line by 28 centimeters was measured 4 days after the beginning of a flank eruption which involved emission of approximately 29 million cubic meters of lava during the period March 5 to March 15, 1965. During the expansion, the standard deviation of 10 Tellurometer measurements from a least-squares srtaight line solution is ± 2.0 centimeters (6.5 ppm) whereas 9 Geodimeter measurements have a standard deviation of ± 1.1 (3.6 ppm) centimeters. Absolute distance readings between the two instruments differ by 4 centimeters (13 ppm), but relative changes in distance were the same on both instruments. Changes in distance across Kilauea Caldera can, therefore, be easily measured to accuracies of 4 to 7 parts per million with standard electronic distance measuring systems. On active volcanoes where ground surface deformation exceeds 10–100 parts per million with changes in subsurface magma pressure or volume, repeated horizontal distance measurements can be a most useful technique.  相似文献   

8.
Horizontal ground deformation measurements were made repeatedly with an electronic distance meter near the Puu Oo eruption site approximately perpendicular to Kilauea's east rift zone (ERZ) before and after eruptive episodes 22–42. Line lengths gradually extended during repose periods and rapidly contracted about the same amount following eruptions. The repeated extension and contraction of the measured lines are best explained by the elastic response of the country rock to the addition and subsequent eruption of magma from a local reservoir. The deformation patterns are modeled to constrain the geometry and location of the local reservoir near Puu Oo. The observed deformation is consistent with deformation patterns that would be produced by the expansion of a shallow, steeply dipping dike just uprift of Puu Oo striking parallel to the trend of the ERZ. The modeled dike is centered about 800 m uprift of Puu Oo. Its top is at a depth of 0.4 km, its bottom at about 2.9 km, and the length is about 1.6 km; the dike strikes N65° E and dips at about 87°SE. The model indicates that the dike expanded by 11 cm during repose periods, for an average volumetric expansion of nearly 500 000 m3. The volume of magma added to the dike during repose periods was variable but correlates positively with the volume of erupted lava of the subsequent eruption and represents about 8% of the new lava extruded. Dike geometry and expansion values are used to estimate the pressure increase near the eruption site due to the accumulation of magma during repose periods. On average, vent pressures increased by about 0.38 MPa during the repose periods, one-third of the pressure increase at the summit. The model indicates that the dikelike body below Puu Oo grew in volume from 3 million cubic meters (Mm3) to about 10–12 Mm3 during the series of eruptions. The width of this body was probably about 2.5–3.0 m. No net long-term deformation was detected along the measured deformation lines.  相似文献   

9.
The chemical surveillance of Kilauea volcano, Hawaii, has continued. No relationship has thus far been identified between the helium content of an associated fumarole and the activity at the volcano. Fume samples from Halemaumau crater in Kilauea caldera and from a fissure eruption that occurred nearby on the floor of the caldera during August 1971 were examined for their halogen (Cl and F) and sulfur contents. The ratio of Cl/F in fume showed an abnormal increase in samples taken at Halemaumau a month before the eruption. This change in ratio may be a helpful indicator of the onset of eruption in volcanic areas.  相似文献   

10.
The Hilina Formation comprises the oldest sequence of lava flows and tuffs exposed on Kilauea Volcano. These rocks are only exposed in kipukas in younger Puna Formation lavas along cliffs on the south flank of Kilauea Volcano. Locally, tuffs and flows of the Pahala Formation separate the underlying Hilina Formation rocks rom the overlying Puna Formation rocks. Charcoal collected from the base of the Pahala Formation yielded a C14 age of 22.800±340 years B.P. which defines a minimum age for the Hilina Formation. Hilina Formation lavas crop out over a wide region and probably originated from the summit area and from both rift zones. The Hilina Formation contains both olivine-controlled and differentiated lavas (using the terminology ofWright, 1971). The olivine-controlled lavas of the Hilina Formation are distinguishable mineralogically and geochemically from younger olivine-controlled Kilauea lavas. The younger lavas generally contain discrete low-calcium pyroxene grains. greater glass contents, higher K2O/P2O5 ratios and lower total iron contents. Similar geochemical trends prevail for Manuna Loa lavas, and may typify the early lavas of Hawaiian shield volcanoes. Despite these similarities, the Hilina Formation (and all Kilauea) lavas have higher TiO2 and CaO, and lower SiO2 and Al2O3 contents than Mauna Loa Lavas. These differences have existed for over 30,000 years. Therefore, it is unlikely that the older lavas of Kilauea are compositionally similar to recent Mauna Loa lavas as was previously suggested. K2O, TiO2, Na2 and Zr contents of lavas from a stratigraphic sequence of Hilina Formation lavas are variable. These variations may be utilized to subdivide the sequence into geochemical groups. These groups are not magma batches. Rather, they represent lavas from batches whose compositions may have been modified by crystal fractionation and magma mixing.  相似文献   

11.
Most of the known pit craters in Hawaii occur along the East and Southwest Rift Zones of Kilauea volcano. The pit craters typically are either astride a single rift zone fracture or between a pair of rift zone fractures. These fractures are prominent in the pit crater walls. The pit craters are elliptical in plan view, with their major diameters ranging from 8 to 1140 m. They range in depth from 6 m to 186 m. They typically develop with initially steep, locally overhanging walls, but as the walls collapse, the craters fill with talus and become shaped like inverted elliptical cones. None of the craters apparently formed as eruptive vents, although some have been subsequently filled by lava. Devil's Throat is the best-exposed pit crater along the East Rift Zone. It is sited at a `waist' between two east-striking zones of ground cracks; the spacing between the crack zones decreases towards Devil's Throat. East-striking fractures are also prominent in the pit crater walls. Pit craters along the Southwest Rift Zone typically are elongate in plan view along the direction of the rift, have large caves at their bases along the long axes of the craters, and are smaller than those of the East Rift Zone. Some closely spaced pits there have coalesced to form a trough. Based on our observations and mechanical considerations, we infer that pit craters form by stoping over an underlying large-aperture rift zone fracture, and not by piston-like collapse over broad magma bodies or voids. Flow of magma along the underlying fracture may remove stoped blocks and prevent the fracture from being choked with debris. This mechanism is consistent with pit crater location, ground crack patterns, the preferred orientation of fractures in pit crater walls, and pit crater geometry (both in map view and cross-section). The mechanism also fits with observations of stoping into a gaping rift fracture that conducted lava from Kilauea caldera during the 1920s. Additionally, the ratio of pit crater width to depth of 0.5 to 2 is consistent with pit craters forming over a nearly vertical opening mode fracture.  相似文献   

12.
An SO2 flux of 1170±400 (1) tonnes per day was measured with a correlation spectrometer (COSPEC) in October and November 1986 from the continuous, nonfountaining, basaltic East Rift Zone eruption (episode 48A) of Kilauea volcano. This flux is 5–27 times less than those of highfountaining episodes, 3–5 times greater than those of contemporaneous summit emissions or interphase Pu'u O'o emissions, and 1.3–2 times the emissions from Pu'u O'o alone during 48A. Calculations based on the SO2 emission rate resulted in a magma supply rate of 0.44 million m3 per day and a 0.042 wt% sulfur loss from the magma upon eruption. Both of these calculated parameters agree with determinations made previously by other methods.  相似文献   

13.
During the 1971–1972 eruption of Soufrière volcano on St. Vincent Island, a lava mass was extruded subaqueously in the crater lake. An investigation of the chemistry of the lake indicates that over 50,000 tons of dissolved solids were taken into solution during the eruption, in addition to 9000 tons of iron precipitated as ferric oxide in syngenetic metalliferous sediments on the crater floor. Leaching of hot disintegrating lava and volcanic glass is the principal source of cations dissolved in the lake (Na, Ca, Mg, Si and K), whereas chlorine and sulfur were introduced during injection of acid volcanic gases from the submerged lava mass. Concentrations of the common cations in the lake are not affected by mineral solubility, except in the case of Fe3+, but rather by the rate of leaching, evaporation, and water-rock reactions. Variations in Cl/Na, total Cl and acidity have aided in identification of distinct fumarolic phases during the eruption, which may correlate with observed increase in frequency of minor volcanic tremors in the crater. Accumulation of ferric oxide in sediments on the crater floor is thought to be due to leaching of ferrous iron at high temperature from the lava mass, followed by oxidation and precipitation of hematite in the cooler lake.  相似文献   

14.
Accelerating rates of volcano-tectonic (VT) earthquakes are commonly observed during volcanic unrest. Understanding the repeatability of their behaviour is essential to evaluating their potential to forecast eruptions. Quantitative eruption forecasts have focused on changes in precursors over intervals of weeks or less. Previous studies at basaltic volcanoes in frequent eruption, such as Kilauea in Hawaii and Piton de La Fournaise on Réunion, suggest that VT earthquake rates tend to follow a power-law acceleration with time about 2 weeks before eruption, but that this trend is often obscured by random fluctuations (or noise) in VT earthquake rate. These previous studies used a stacking procedure, in which precursory sequences for several eruptions are combined to enhance the signal from an underlying acceleration in VT earthquake rate. Such analyses assume a common precursory trend for all eruptions. This assumption is tested here for the 57 eruptions and intrusions recorded at Kilauea between 1959 and 1984. Applying rigorous criteria for selecting data (e.g. maximum depth; restricting magnitudes to be greater than the completeness magnitude, 2.1), we find a much less pronounced increase in the aggregate rate of earthquakes than previously reported. The stacked trend is also strongly controlled by the behaviour of one particular pre-eruptive sequence. In contrast, a robust signal emerges among stacked VT earthquake rates for a subset of the eruptions and intrusions. The results are consistent with two different precursory styles at Kilauea: (1) a small proportion of eruptions and intrusions that are preceded by accelerating rates of VT earthquakes over intervals of weeks to months and (2) a much larger number of eruptions that show no consistent increase until a few hours beforehand. The results also confirm the importance of testing precursory trends against data that have been filtered according to simple constraints on the spatial distribution and completeness magnitude of the VT earthquakes.  相似文献   

15.
This paper presents a new method of analysing lava flow deposits which allows the velocity, discharge rate and rheological properties of channelled moving lavas to be calculated. The theory is applied to a lava flow which was erupted on Kilauea in July 1974. This flow came from a line of fissures on the edge of the caldera and was confined to a pre-existing gully within 50 m of leaving the vent. The lava drained onto the floor of the caldera when the activity stopped, but left wall and floor deposits which showed that the lava banked up as it flowed around each of the bends. Field surveys established the radius of curvature of each bend and the associated lava levels, and these data, together with related field and laboratory measurements, are used to study the rheology of the lava. The results show the flow to have been fast moving but still laminar, with a mean velocity of just over 8 m s–1; the lava had a low or negligible yield strength and viscosities in the range 85–140 Pa s. An extension of the basic method is considered, and the possibility of supercritical flow discussed.  相似文献   

16.
The morphology and composition of spinel in rapidly quenched Pu’u ’O’o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3–5 vol.%) and microphenocrysts of spinel (0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5–50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150°C to 1180°C. The oxygen fugacity before quenching was calculated by two independent methods and the log fO2 ranged from −9.2 to −9.9 (delta QFM=−1). The spinel in the Pu’u ’O’o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg)=0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the calculated pre-collection temperatures of the samples show a 5°C drop with distance from the vent. The average Fe2+/(Fe2++Mg) of the spinel in these samples shows a weak positive correlation with decreasing MgO in the glass of these samples. The range in Cr2O3 (0.041–0.045 wt.%) of the glass for these six samples is too small to distinguish a consistent change along the lava tube. The spinel in the Pu’u ’O’o samples shows a zoning trend in a Cr–Al–Fe3+ diagram almost directly away from the Cr apex. This compares with a zoning trend in rapidly quenched MORB samples away from Cr coupled with decreasing Fe3+. The trend away from Cr displayed by spinel in rapidly quenched samples is in marked contrast to the trend of increasing Fe3+ shown by spinel in slowly cooled lava.  相似文献   

17.
Kilauea's 1955 eruption was the first major eruption (longer than 2 days) on its east rift zone in 115 years. It lasted 88 days during which 108 × 106 m3 of lava was erupted along a discontinuous, 15-km-long system of fissures. A wide compositional range of lavas was erupted including the most differentiated lavas (5.0 wt% MgO) from a historic Kilauea eruption. Lavas from the first half of the eruption are strongly differentiated (5.0–5.7 wt% MgO); later lavas are weakly to moderately differentiated (6.2–6.7 wt% MgO). Previous studies using only major-element compositions invoked either crystal fractionation (Macdonald and Eaton 1964) or magma mixing (Wright and Fiske 1971) as models to explain the wide compositional variation in the lavas. To further evaluate these models detailed petrographic, mineralogical, and whole-rock, major, and trace element XRF analyses were made of the 1955 lavas. Plagioclase and clinopyroxene in the early and late lavas show no petrographic evidence for magma mixing. Olivines from both the early and late lavas show minor resorption, which is typical of tholeiitic lavas with low MgO contents. Core-to-rim microprobe analyses across olivine, augite, and plagioclase mineral grains give no evidence of disequilibrium features related to mixing. Instead, plots of An/Ab vs distance from the core (D) and %Fo vs (D)4.5 generated essentially linear trends indicative of simple crystal fractionation. Least-squares, mass-balance calculations for major- and trace-element data using observed mineral compositions yield excellent results for crystal fractionation (sum of residuals squared <0.01 for major elements, and <5% for trace elements); magma mixing produced less satisfactory results especially for Cr. Furthermore, trace-element plots of Zr vs Sr, Cr, and A12O3 generate curved trends indicative of crystal fractionation processes. There is no evidence that mixing occurred in the 1955 lavas. Instead, the data are best explained by crystal fractionation involving a reservoir that extends at least 15 km along Kilauea's east rift zone. A dike was intruded into the rift zone from the summit reservoir eight days after the eruption started. Instead of causing magma mixing, the dike probably acted as a hydraulic plunger forcing more of the stored magma to be erupted.  相似文献   

18.
Iwate volcano, Japan, showed significant volcanic activity including earthquake swarms and volcano inflation from the beginning of 1998. A large earthquake of magnitude 6.1 hit the south-west of the volcano on September 3. Although a 1 km2 fumarole field formed, blighting plants on the ridge in the western part of the volcano in the spring of 1999, no magmatic eruptions occurred. We reconcile the spatio-temporal distributions of volcanic pressure sources determined by previously reported studies in which GPS, strain and tilt data from dense geodetic station networks are analyzed (Miura et al. Earth Planet Space 52:1003–1008, 2000; Sato and Hamaguchi J Volcanol Geotherm Res 155:244–262, 2006). We calculate the magma supply rates from their results and compare them with the occurrence rates of volcanic earthquakes. The results show that the magma supply rates are almost constant or even decrease with time while the earthquake occurrence rate increases with time. This contrast in their temporal changes is interpreted to result from stress accumulation in the volcanic edifice caused by constant magma supply without effusion of magma to the surface. We further show that data showing slight acceleration in strain can be best explained by magma ascent at a constant velocity, and that there is no evidence for increased magma buoyancy resulting from gas bubble growth. This consideration supports the interpretation that the magma stayed at 2 km depth and horizontally migrated. These findings relating magma supply rate and seismicity to magma ascent process are clues to understanding why no magmatic eruption occurred at Iwate volcano in 1998.  相似文献   

19.
To investigate the physical controls on volcano-tectonic (VT) precursors to eruptions and intrusions at basaltic volcanoes, we have analyzed the spatial and temporal patterns of VT earthquakes associated with 34 eruptions and 23 dyke intrusions that occurred between 1960 and 1983 at Kilauea, in Hawaii. Eighteen of the 57 magmatic events were preceded by an acceleration of the mean rate of VT earthquakes located close to the main shallow magma reservoir. Using a maximum-likelihood technique and the Bayesian Information Criterion for model preference, we demonstrate that an exponential acceleration is preferred over a power-law acceleration for all sequences. These sequences evolve over time-scales of weeks to months and are consistent with theoretical models for the approach to volcanic eruptions based on the growth of a population of fractures in response to an excess magma pressure. Among the remaining 40 magmatic events, we found a significant correlation between swarms of VT earthquakes located in the mobile south-flank of Kilauea and eruptions and intrusions. The behaviour of these swarms suggests that at least some of the magmatic events are triggered by transient episodes of elevated rates of aseismic flank movement, which could explain why many eruptions and intrusions are not preceded by longer-term precursory signals. In none of the 57 cases could a precursory sequence be used to distinguish between the approach to an eruption or an intrusion, so that, even when a precursory sequence is recognized, there remains an empirical chance of about 40% (24 intrusions from 57 magmatic events) of issuing a false alarm for an imminent eruption.  相似文献   

20.
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano. Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号