首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
老君山砾岩是一套由砾岩和杂砂岩组成的陆相粗碎屑岩.砾岩由来自下伏基底的超镁铁岩、中-基性火山岩、硅质岩、花岗岩等碎屑组成.杂砂岩中岩屑含量大于70%,石英约10%,长石约15%.岩屑以中基性火山岩和花岗岩为主;硅质岩屑是主要的沉积岩屑.锆石、磷灰石、磁铁矿是杂砂岩中最为丰富的重矿物,同时还有铬铁矿、石榴子石、电气石、金红石、黄铁矿.这些事实说明,老君山砾岩的源区曾出露有超镁铁岩、中基性火山岩、变质岩等类型的岩石.砂岩碎屑模式和粉砂岩、泥岩的地球化学成分均表明,老君山砾岩源区为大陆边缘弧和大洋岛弧,形成于活动大陆边缘与岛弧相关的沉积盆地中.  相似文献   

2.
沿雅鲁藏布江缝合带分布的柳区砾岩是喜马拉雅造山作用过程中重要的沉积记录。然而,目前对该套地层的构造属性仍存在不同的认识,因为尚未发现来自冈底斯中酸性的火山岩砾石,部分学者认为其是在印度和洋内岛弧碰撞形成的。本次工作对柳区出露的柳区砾岩进行了详细的剖面实测、沉积学观察和物源区分析。地层由厚层的砾级到巨砾级的砾岩以及相对较薄层的砂岩和泥岩组成,砾石包括硅质岩、基性-超基性岩、石英砂岩、岩屑砂岩以及板岩和千枚岩。砾岩分选差,磨圆差,颗粒支撑和基质支撑均发育,根据岩相组合判断其形成于冲积扇和辫状河环境。较大的砾径以及极低的结构成熟度表示为近源堆积,暗示雅鲁藏布江蛇绿岩带为该套砾岩的重要源区,而特提斯喜马拉雅带为板岩和片岩的主要源区。岩屑砂岩的碎屑颗粒统计结果显示岩屑的含量为82%~85%,其中沉积岩屑为主(82%~95%),石英颗粒以单晶石英为主。碎屑锆石U-Pb年龄有453~579Ma和737~889Ma二个主要的范围,而缺少200~400Ma的锆石年龄。上述观测都说明日喀则弧前盆地、雅鲁藏布蛇绿岩带和特提斯喜马拉雅为柳区砾岩的重要物源区。由于柳区砾岩内部含有日喀则弧前盆地提供的物源,所以柳区砾岩是印度-欧亚板块碰撞之后沉积的。而柳区砾岩内各成分的变化反应源区对物源贡献的变化,同时记录了造山带隆升的历史,具体表现为印度-欧亚板块碰撞后,首先雅鲁藏布江蛇绿岩带和日喀则弧前盆地相对较快隆升,并遭受剥蚀,为柳区砾岩的沉积提供初始的物源,随着印度板块的俯冲,特提斯喜马拉雅带开始隆升,成为了柳区砾岩的物源,主要提供板岩和千枚岩。进一步的俯冲使得蛇绿岩带大幅度隆升而阻碍了日喀则弧前盆地和冈底斯继续提供物源,使得柳区砾岩上段石英砂岩中缺少火山岩石英和再旋回的石英颗粒。  相似文献   

3.
由于后造山期的构造运动改造和巨量剥蚀,大别造山带的初始剥露时间,即开始为周缘盆地提供物源的时间缺乏精确限定。文章对下扬子宁芜盆地中三叠统黄马青组三角洲相陆源碎屑岩进行野外调查,并开展了沉积岩石学和物源分析。结果显示,黄马青组以岩屑石英砂岩、长石岩屑石英砂岩为主,石英含量76%~84%,岩屑含量10%~14%,长石含量6%~11%。岩屑以富含石英的变质岩或变泥质岩岩屑为主,指示变质岩的特殊物源的存在;黄马青组砂岩碎屑锆石年龄主要分布在350~250 Ma、420~400 Ma、900~700 Ma、2000~1600 Ma、2500~2100 Ma等区间,反映了华南板块北缘、华北板块南缘的混合信号,其物源供应主要来自大别造山带南部的宿松杂岩带、华北板块南缘基底及沉积盖层物质;通过与大别造山带周缘中生代沉积记录进行对比,发现在中—晚三叠世各盆地具有物源相似性,认为大别造山带低级变质带的早期折返导致了造山带的初始抬升和剥露,宁芜盆地中三叠统黄马青组至少一部分沉积物来自造山带早期抬升与剥蚀。  相似文献   

4.
Eclogite facies cataclasite is recognized at Yangkou in the Chinese Su‐Lu ultrahigh‐P metamorphic belt. The cataclasite dykes (5?15 cm wide) are bounded by mylonite/ultramylonite zones, cutting through unfoliated metagabbro and/or eclogite. The cataclasite veins (generally 2–4 cm wide) are free of mylonite boundary zones, cutting through the foliation of the high‐P host rock. The dykes and veins are dominated by eclogite fragments consisting of debris of omphacite, garnet, quartz, phengite and kyanite, in a matrix of variable amounts of a schist rich in quartz, phengite and kyanite. Garnet clasts in the fragments are welded and overgrown by more Ca‐rich garnet containing mineral inclusions different from those in the garnet cores. The micropoikilitic texture of garnet is typical of eclogitic pseudotachylytes. Crack‐sealing K‐feldspar veinlets in the cataclasite dykes also imply frictional or shock‐induced melting of K‐mica. The modal abundances in the cataclasite and the schist imply that the dykes formed by flow of the omphacite and garnet‐dominated cataclasites into the fractures during seismic faulting, while the lower density minerals (quartz, phengite and kyanite) were largely left in the ultramylonite boundary zones. The dykes have the same composition as their host rocks, except for slightly lower Si and large ion lithophile elements and higher Mg, Ca, Cr, Co and Ni. Chromite, probably spurted from the nearby ultramafic rock, is found as rare particles in the cataclasite fragments. This indicates that material exchange occurred by mechanical mixing between the dykes and the ultramafic rock during seismic faulting. The Cr‐rich eclogite minerals grown on the chromite are evidence for coseismic high‐P crystallization. Short‐lived crystal growth is implied by the fine grain sizes of the eclogite minerals and very limited element diffusion between the garnet clasts and their overgrowths. The fact that the host rocks are more hydrated implies that the dyke formation was not related to fluid infiltration. It appears, therefore, that stress was the key factor inducing the high‐P phase transformation in the dykes. Both stress and temperature were only transiently high in the dykes, which have been metastable since they were formed.  相似文献   

5.
Provenance and tectonic history of the late Eocene‐early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece, were studied using sandstone framework composition, sedimentological data and sandstone and mudstone geochemistry. The resulting tectonic–sedimentological model is based on the late Eocene–early Oligocene Lemnos Island being in a forearc basin with the outer arc ridge as a major sediment source. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic and plutonic igneous rocks deposited in the studied area in a recycled orogenic environment. Moreover, within the above sediments, the minor occurrence of volcanic fragments suggests little or no influence of a volcanic source. Provenance results, based on major, trace and rare earth element (REE) data, suggest an active continental margin/continental island arc signature. All the samples are LREE, enriched relative to HREE, with a flat HREE pattern and positive Eu anomalies, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) were not of great importance. Results derived from the multi‐element diagrams also suggest an active margin character, and a mafic/ultramafic source rock composition, while the positive anomaly of Zr that can be attributed to a passive continental margin source, is most likely associated with reworking and sorting during sediment transfer. Palaeocurrents, with a NE–NNE direction, indicate a northeast flow, towards the location of the late Eocene–early Oligocene magmatic belt in the north‐east Aegean region. Conglomerates are composed of chert, gneiss and igneous fragments, such as basalts and gabbros, suggesting this outer arc ridge as a likely source area. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
柴北缘西段古近纪物源体系分析   总被引:1,自引:1,他引:0       下载免费PDF全文
沉积区物源分析对研究造山带构造演化、盆地沉积过程及划分油气区带等方面具有重要的意义。为了查明柴达木盆地北缘构造带古近纪物源方向,通过对古近系碎屑岩的碎屑组成、岩屑成分、重矿物组合特征和ZTR指数的研究,并结合前人的研究成果,初步确定古近纪柴北缘西段发育五大主力物源区:(1)牛东物源主要来自阿尔金山东段,重矿物组合以稳定且含量较高的电气石区别于邻区,碎屑组分中以石英和含量较高的长石为特征,岩屑中含有少量的碳酸盐岩岩屑;(2)冷北物源主要来自小赛什腾山方向,重矿物组合中榍石和赤铁矿的含量明显偏高,碎屑组分中以高岩屑为特征;(3)赛西物源主要来自赛什腾山西段,电气石和角闪石含量较高,碎屑组分较为均一,母岩以变质岩和火成岩为主,含少量碳酸盐岩岩屑;(4)赛东物源主要来自赛什腾山东段,其白钛矿含量明显高于邻区,碎屑组分以较高含量的石英和长石为主,岩屑类型主要为变质岩、火成岩和沉积岩岩屑;(5)九龙山物源主要来自九龙山和绿梁山地区,石榴石含量高且稳定,碎屑组分较为均一,母岩以变质岩和火成岩为主,含少量的非碳酸盐岩类沉积岩岩屑。  相似文献   

7.
PROVENANCE OF LOWER TERTIARY REDBEDS IN HOH XIL BASIN AND UPLIFT OF NORTHERN TIBET PLATEAU  相似文献   

8.
Detailed data are discussed on the rate of Holocene horizontal and vertical movements along a fault in the southeastern Kamchatsky Peninsula, which is situated between the converging Aleutian and Kamchatka island arcs. The fault is the northern boundary of the block invading into the peninsula under pressure of the Komandorsky Block of the Aleutian arc. The rate of right-lateral slip along the fault was increasing in the Holocene and reached 18–19 mm/yr over the last 2000 years and 20 mm/yr by contemporary time. Comparison of these estimates with those that follow from offsets of older rocks also indicates acceleration of horizontal movements along the fault from the early Quaternary to the present. The results obtained from rates of GPS station migration show that about half the rate of the northwestern drift of the Komandorsky Block is consumed for movement of the block of the southern side of the fault. The remainder of movement of the Komandorsky Block is consumed for movements (probably, underthrusting) at the eastern continental slope of the Kamchatsky Peninsula.  相似文献   

9.
The approximately 150 km2 Jijal complex occupies a deep-levelsection of the Cretaceous Kohistan are obducted along the Indussuture. The complex consists of mafic garnet granulites, anda > 10 km ? 4 km slab of pyroxenites (diopsidite > websterite;? olivine), dunite, and subordinate peridotite, all of whichare devoid of plagioclase. These contain chromite either inlenses, layers, and veins or as disseminated grains. The chromiteis mostly medium grained, subhedral to euhedral, shows pull-aparttexture, and may contain inclusions of associated silicates.Chromite grains within thin sections of chromitite are generallyhomogeneous in composition, but dunite and pyroxenite samplescommonly contain chromite grains of variable composition. Thesegregated chromite has higher Cr2O3 wt%, cr-number, and mg-number,and lower fe'-number than the accessory chromite. These variationsare mainly attributed to subsolidus exchange of Mg and Fe betweenchromite and associated olivine or pyroxene, and to inheritancefrom a magmatic source, but other factors may also be responsible.In general, the chromite grains are altered along margins andfractures to ferritchromit that is enriched in cr-number (andgenerally Fe3+, Mn, and Ti) and impoverished in mg-number comparedwith the parent grains. Chromian chlorite (clinochlore, penninite,with up to 7?3 wt.% Cr2O3) is commonly associated with the alteration,as is serpentine in most silicate rocks and some chromitites.The chlorite shows considerable compositional variation fromgrain to grain and in some cases within a single grain. Clinopyroxene is low-Al, -Na and high-Ca diopside. Orthopyroxeneranges from En91 to En82 and olivine from Fo98 to Fo84 (ignoringone analysis each). The mg-number of these minerals is higherin chromitites than in dunites and pyroxenites. Several aspectsof the petrogenesis of the ultramafic rocks (e.g., the abundanceof diopsidite) are not clear, but they seem to have passed througha complex history. The high cr-numbers (>60) in the chromiteindicate that the rocks may have originated from some form ofoceanic lithosphere-island are interaction. Petrography andmineral compositional data suggest that the rocks are ultramaficcumulates derived from an are-related (?primitive) high-Mg tholeiiticmagma, possibly at pressures in excess of 8 kb.There also aresmall ultramafic bodies in the form of conformable layers andemplaced masses within the garnet granulites. These containmagnetite and pleonaste with < 10 wt.% Cr2O3, and less magnesianolivine and pyroxene than the principal ultramafic mass. Thesealso have the characteristics of island are plutonic rocks,but it is not clear whether the garnet granulites constitutea continuous sequence of are cumulates with the principal ultramaficmass or the two are produced from different source magmas.  相似文献   

10.
Eclogites characterized by a garnet + clinopyroxene + orthopyroxene + sanidine + rutile assemblage are reported for the first time in the eastern Bangong suture, central Tibet (China). Garnet and sanidine are exsolved from clinopyroxene. Al‐exchange barometer for orthopyroxene and garnet and K concentrations in clinopyroxene indicate a peak pressure of ~4 GPa. The occurrence of these ultrahigh‐pressure rocks implies the subduction of continental crust to a depth of >130 km along the eastern Bangong suture zone during the Early Jurassic. The denudation of these ultrahigh‐pressure metamorphic rocks could have provided a significant source for the Jurassic turbidites in the western Bangong ocean basin.  相似文献   

11.
单芝波 《地质科学》1958,55(4):1248-1265
基于开鲁盆地钱家店铀矿床姚下段砂岩的碎屑组分分析、重矿物组合特征以及稀土元素分析,探讨了该砂岩型铀矿的物质来源及矿质来源。碎屑组分分析指示该地区姚下段砂岩碎屑矿物以石英为主,碱性长石次之,岩屑类型丰富且含量较高;重矿物组合特征反映出姚下段重矿物以稳定矿物钛磁铁矿、白钛石、锆石和石榴石等为主,不稳定矿物绿帘石、硬绿泥石及黑云母含量较少;稀土元素特征显示出蚀源区花岗岩与过渡带相似的REE分布模式,花岗岩的ΣREE值与过渡带的ΣREE值较接近,且均具有铕负异常。综上所述,钱家店地区姚家组下段沉积显示了多物源体系的特征,碎屑矿物以中酸性岩浆岩来源为主,变质岩来源碎屑为辅;物源主要有3大方向:西北部舍伯吐凸起物源、东部架玛吐凸起物源及南部的燕山造山带物源,物源总体以南部燕山造山带为主,同时受多方向物源的共同控制。燕山晚期中酸性富铀岩浆岩在钱家店铀矿床铀源供给方面扮演了重要的角色。  相似文献   

12.
碎屑重矿物由于相对比较稳定,蕴含重要的成因信息,对其进行电子探针成分分析,能够还原岩石形成的物源区和盆地构造背景。内蒙古西乌旗早二叠世寿山沟组一段主要由砂岩夹砾岩等组成,二段主要由粉砂岩、泥岩等组成。重矿物分析表明,寿山沟组一段和二段砂岩重矿物主要有锆石、尖晶石和石榴子石等,指示其物源区为岩浆岩和变质岩。重矿物电子探针成分分析结果显示,电气石成分指示其具贫锂花岗岩和变沉积岩物源,尖晶石成分指示其具岛弧和洋中脊玄武岩类物源,石榴子石成分指示其具高级变质基性岩源区。综合物源分析显示,寿山沟组主要来源于迪彦庙蛇绿岩、锡林浩特杂岩和本巴图组玄武岩等。结合区域地质对比,认为寿山沟组形成于弧后盆地,古亚洲洋在早二叠世时期尚未闭合。  相似文献   

13.
松辽盆地东南隆起区反转构造对砂岩型铀矿成矿的作用   总被引:2,自引:0,他引:2  
张振强  桑吉盛  金成洙 《铀矿地质》2006,22(3):151-156,181
松辽盆地东南隆起区嫩江组沉积期末形成了大量的正反转构造,主要发育断陷和坳陷层序反转背斜型、断陷层序中断层下正上逆型、坳陷层序中断层上下皆逆型、断陷层序中断层上下皆逆型4种样式.构造反转改变浅部坳陷层的构造形态、物理性能、地下水的循环方式和岩石地球化学性质,导致深部油气和CO2向上运移,有利于形成砂岩型铀矿床.因此,盆地东南部找铀矿应注重由反转构造形成的剥蚀天窗地区.  相似文献   

14.
普宜地区位于上扬子腹地——四川盆地东南缘,区内晚三叠世碎屑岩记录了上扬子前陆盆地演化信息,是研究盆地东缘盆山耦合的理想对象.二桥组主要由三角洲平原-三角洲前缘相砂岩组成,交错层理恢复的物源主要来自东侧,砂岩岩屑主要由岩浆岩岩屑和变质岩岩屑组成,碎屑重矿物主要由锆石、电气石、金红石、白钛石、黄铁矿、锐钛矿、石榴子石、铬铁...  相似文献   

15.
The Bela arc-basin ophiolite (BABO) is a complex of ophiolite and melange outcrops that formed in the tectonic setting of an oceanic volcanic arc and its adjoining forearc basin. The BABO contains typically podiform segregations of chromite, whose microprobe compositions display a variation trend separate from that of the chromian spinel from surrounding peridotites, but similar to that in the latter igneous differentiates (pyroxenites and an andesite). The podiform chromitite and associated dunite were derived by mantle-melt reaction and cumulate-melt crystallization. Both exhibit conformable relations and are cogenetic. Chromite characteristics conform to the suprasubductionzone setting of the BABO, with two components distinguished from the whole-rock geochemistry, field relations, and chromite chemistry—a remnant forearc basin toward the southwest and an adjacent arc-trench gap toward the northeast. Individual ophiolite massifs within the BABO display differences in degree of partial melting and may have originated from different depths within the mantle.  相似文献   

16.
通过详实的野外调查和室内研究,在西藏吉瓦地区新发现了砂岩型铜矿床,赋矿层位为渐新统日贡拉组,矿床类型为层控矿床。为探讨日贡拉组砂岩的物源特征及其构造背景、查明其含矿物质来源,通过碎屑矿物定量分析、元素地球化学方法及重矿物组合分析等一系列物源分析方法对日贡拉组的物质来源进行了研究。结果显示,研究区主要岩性为岩屑砂岩,岩屑主要成分为酸性火山岩,砂岩结构成熟度低,分选磨圆差。碎屑组分分析表明物源集中在火山弧物源区,地球化学特征为硅质含量高、LREE富集、HREE相对亏损、显示Eu负异常,均表明物源与酸性火山岩密切相关;日贡拉组砂岩的大地构造背景主要为大陆岛弧,砂岩碎屑来自上地壳长英质源区。重矿物组合以反映物源为中酸性岩浆岩成分的赤褐铁矿+磁铁矿、锆石、电气石、石榴子石为主,沉积环境为气候干旱、水体较浅的富氧环境。锆石形态特征指示物源距母岩区较近,重矿物的相关性分析也指示了物源与火山岩密切相关。研究区的日贡拉组砂岩与早白垩酸性火山岩微量元素及重矿物的对比表明,碎屑物质源区特点从岩石学特征、地球化学特征及重矿物组合特征上均表现出了亲缘关系,物源成分与火山作用紧密相关,很可能主要来自班公湖-怒江洋壳南向俯冲与雅鲁藏布江洋壳北向俯冲双重制约条件下产生于火山弧环境中的早白垩世火山岩。日贡拉组发现了砂岩型铜矿,火山岩提供了成矿物质来源,为寻找同类型的矿床开启思路。  相似文献   

17.
应用WRDickinson等人对砂岩与物源分析结果,对我国华北地台第一沉积盖层的宣龙内陆海长城系的常州沟组和串岭组的砂岩和石英岩状砂岩进行投点,结果表明,形成砂岩和石英岩状砂岩的主要物源,是内陆海南北两侧的大陆块蚀源区的克拉通源区。通过阴极发光分析,进一步揭示了克拉通古陆火成岩的物源略多于变质岩。重矿物鉴定结果,确定了火成岩主要为花岗岩和花岗闪长岩;变质岩为合石榴石斜长片麻岩和角闪片麻岩等。克拉通岩石经过长期风化,碎屑经过远距离搬运和充分地离解和分解之后,在宣龙内陆海沉积了常州沟、串岭沟组的砂岩和石英岩状砂岩。  相似文献   

18.
鄂尔多斯盆地西南部晚古生代早—中期物源分析   总被引:13,自引:0,他引:13  
鄂尔多斯盆地西南部物源主要为太古界的中—深变质、强烈岩浆活动和混合岩化的复杂变质岩系及下元古界的一套变质火山岩—沉积岩系,在构造上具有稳定与活动的双重性。在不同物源影响区内,轻、重矿物组分特征也明显不同。镇原—庆阳地区的石英主要是棕色变质成因岩石,长石以碱性长石为主,母岩区为祁连—北秦岭造山带的太华群、秦岭群及宽坪群的变质石英砂岩、石英片岩、石英岩、花岗岩或花岗片麻岩等。综合分析,区内有3个不同的物源区,岩屑组成及重矿物组合在南、北物源分布区中明显不同,而且从盒8期青铜峡—固原断裂以西地区开始隆升,西部物源逐渐补给,并伴有火山活动。在REE配分模式上,南或西南物源的与海原地区的差异较大,与陇西古陆的一致,而且此物源的影响区距源区近,砂体厚度大,物性较好,山西组长石溶孔特别发育,并存在次生溶蚀型孔隙发育带,为最有利的勘探目标区。  相似文献   

19.
ABSTRACT

Sedimentary serpentinite and related siliciclastic-matrix mélanges in the latest Jurassic to Lower Cretaceous lower Great Valley Group (GVG) forearc basin strata of the California Coast Ranges reach thicknesses of over 1 km and include high-pressure (HP) metamorphic blocks. These units crop out over an area at least 300 km long by 50 km wide. The serpentinite also contains locally abundant blocks of antigorite mylonite. Antigorite mylonite and HP metamorphic blocks were exhumed from depth prior to deposition in the unmetamorphosed GVG, but the antigorite mylonite may be mistaken for metamorphosed serpentinite matrix in localities with limited exposure. These olistostrome horizons can be distinguished from intact slabs of serpentinized peridotite associated with the Coast Range Ophiolite (CRO) or serpentinite mélanges of the Franciscan subduction complex (FC) on the basis of internal sedimentary textures (absent in CRO), mixing/interbedding with unmetamorphosed siliciclastic matrix and blocks (differs from CRO and FC), and preserved basal sedimentary contacts over volcanic rocks of the CRO or shale, sandstone, and conglomerate of the GVG (differs from CRO and FC). Even in the relatively well-characterized Palaeo trench–forearc region of the California Coast Ranges the GVG deposits are difficult to distinguish from similar units in the FC and CRO. In typical orogenic belts that exhibit greater post-subduction disruption, distinguishing forearc basin olistostrome deposits, subduction complex, and opholite mantle sections is much more difficult. Forearc basin olistostromal deposits have probably been misidentified as one of the other trench–forearc lithologic associations. Such errors may lead to erroneous interpretations of the nature of large-scale material and fluid pathways in trench–forearc systems, as well as misinterpretations of tectonic processes associated with HP metamorphism and exhumation of the resultant rocks.  相似文献   

20.
Petrographic and geochemical analyses of three Cretaceous lithostratigraphic sandstone units were undertaken to constrain their provenance and tectonic setting. Petrographic analysis showed that there are differences in composition between the three sandstone bodies, which can be attributed to differences in provenance relief, transport distance and geology of the terrain. Composition of the three lithostratigraphic sandstone bodies fall within the craton interior field.
Framework mode and chemical features indicated their derivation from basaltic volcanics, source rocks during the early rifting stage, and felsic, intermediate and mafic igneous source rocks located at the southeast basement complex terrain, with minor sedimentary components from the uplifted and folded older Cretaceous strata.
The chemical composition of the sandstones is mainly related to source rocks, chemical weathering conditions and transport agents. The source rocks were derived mainly from the southeastern Precambrian basement of Nigeria. Through examination of the sandstones, the tectonic setting was modeled. The Benue Trough belongs to a continental sedimentary basin of the passive margin type.
The tectonic evolution from Albian to Maastrichtain of the trough is contributed to the difference in framework mode and chemical composition of the sandstones. The evolution of the basin was reconstructed in terms of sandstone petrology and geochemistry. The tectonic evolution can be subdivided into three stages from the petrology and geochemistry data. The first stage covers Albian; the second stage the Turonian-Coniacian, and the third stage the Campanian-Maastrichtain. These are the three mega discontinuities in the sandstone composition among these three stages. These three discontinuities signify the influence of tectonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号