首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horizontal components from twenty Ocean Bottom Seismometers deployed along three profiles near the Kolbeinsey Ridge, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. Two profiles were acquired parallel to the ridge, and the third profile extended eastwards across the continental Jan Mayen Basin. The modelling requires a thin (few 100 m) layer with very high V p/V s-ratio (3.5–9.5) at the sea-floor in the area lacking sedimentary cover. The obtained V p/V s-ratios for the remaining part of layer 2A, 2B, 3 and upper mantle, correspond to the following lithologies: pillow lavas, sheeted dykes, gabbro and peridotite, respectively. All crustal layers exhibit a decreasing trend in V p/V s-ratio away-from-the-axis, interpreted as decreasing porosity and/or crack density in that direction. A significant S-wave azimuthal anisotropy is observed within the thin uppermost layer of basalt near the ridge. The anisotropy is interpreted as being caused by fluid-filled microcracks aligned along the direction of present-day maximum compressive stress, and indicates crustal extension at the ridge itself and perpendicular-to-the-ridge compression 12 km off axis. Spreading along the Kolbeinsey Ridge has most likely been continuous since its initiation ca. 25 Ma: The data do not suggest the presence of an extinct spreading axis between the Kolbeinsey Ridge and the Aegir Ridge as has been proposed earlier. The V p/V s-ratios found in the Jan Mayen Basin are compatible with continental crust, overlain by a sedimentary section dominated by shale.  相似文献   

2.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   

3.
Results are presented from a deep seismic sounding experiment with the research vessel POLARSTERN in the Scoresby Sund area, East Greenland. For this continental margin study 9 seismic recording landstations were placed in Scoresby Sund and at the southeast end of Kong Oscars Fjord, and ocean bottom seismographs (OBS) were deployed at 26 positions in and out of Scoresby Sund offshore East Greenland between 70° and 72° N and on the west flank of the Kolbeinsey Ridge. The landstations were established using helicopters from RV POLARSTERN. Explosives, a 321 airgun and 81 airguns were used as seismic sources in the open sea. Gravity data were recorded in addition to the seismic measurements. A free-air gravity map is presented. The sea operations — shooting and OBS recording — were strongly influenced by varying ice conditions. Crustal structure 2-D models have been calculated from the deep seismic sounding results. Free-air gravity anomalies have been calculated from these models and compared to the observed gravity. In the inner Scoresby Sund — the Caledonian fold belt region — the crustal thickness is about 35 km, and thins seaward to 10 km. Sediments more than 10 km thick on Jameson Land are of mainly Mesozoic age. In the outer shelf region and deep sea a ‘Moho’ cannot clearly be identified by our data. There are only weak indications for the existence of a ‘Moho’ west of the Kolbeinsey Ridge. Inside and offshore Scoresby Sund there is clear evidence for a lower crust refractor characterised byp-velocities of 6.8–7.3 km s?1 at depths between 6 and 10 km. We believe these velocities are related to magmatic processes of rifting and first drifting controlled by different scale mantle updoming during Paleocene to Eocene and Late Oligocene to Miocene times: the separation of Greenland/Norway and the separation of the Jan Mayen Ridge/Greenland, respectively. A thin igneous upper crust, interpreted to be of oceanic origin, begins about 50 km seaward of the Liverpool Land Escarpment and thickens oceanward. In the escarpment zone the crustal composition is not clear. Probably it is stretched and attenuated continental crust interspersed with basaltic intrusions. The great depth of the basement (about 5000 m) points to a high subsidence rate of about 0.25 mm yr?1 due to sediment loading and cooling of the crust and upper mantle, mainly since Miocene time. The igneous upper crust thickens eastward under the Kolbeinsey Ridge to about 2.5 km; the thickening is likely caused by higher production of extrusives. The basementp-velocity of 5.8–6.0 km s?1 is rather high. Such velocities are associated with young basalts and may also be caused by a higher percentage of dykes. Tertiary to recent sediments, about 5000 m thick, form most of the shelf east of Scoresby Sund, Liverpool Land and Kong Oscars Fjord. This points to a high sedimentation rate mainly since the Miocene. The deeper sediments have a rather high meanp-velocity of 4.5 km s?1, perhaps due to pre-Cambrian to Caledonian deposits of continental origin. The upper sediments offshore Scoresby Sund are thick and have a rather low velocity. They are interpreted as eroded material transported from inside the Sund into the shelf region. Offshore Kong Oscars Fjord the upper sediments, likely Jurassic to Devonian deposits, are thin in the shelf region but thicken to more than 3000 m in the slope area. The crust and upper mantle structure in the ocean-continent transition zone is interpreted to be the result of the superposition of the activities of three rifting phases related to mantle plumes of different dimensions:
  1. the ‘Greenland/Norway separation phase’ of high volcanic activity,
  2. the ‘Jan Mayen Ridge/Greenland separation phase’ and
  3. the ‘Kolbeinsey Ridge phase’ of ‘normal’ volcanic activity related to a more or less normal mantle temperature.
During period 2 and 3 only a few masses of extrusives were produced, but large volumes of intrusives were emplaced. So the margin between Scoresby Sund and Jan Mayen Fracture Zone is interpreted to be a stretched margin with low volcanic activity.  相似文献   

4.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

5.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

6.
The Jan Mayen area has an extreme environment with low temperatures and infrequent, but abrupt temperature changes. The shrimp population here is considered to be on its edge of distribution. The life-history parameters are in the same range as in other high-latitude shrimp populations and are characterized by slow growth, large size at maturation and extended longevity. Irregular and sporadic commercial exploitation limit fishing mortality and give the population life-history parameters not previously seen in other areas. The Jan Mayen shrimp are large compared to, e.g., the Barents Sea shrimp and can reach a maximum carapace length (Lmax) of 37 mm and an age of 10–11 years. The large size at sex transformation (L50, >24 mm) and analyses of length–frequency distributions indicate that the shrimp may be 6–7 years of age before changing sex. The change in Lmax and L50 observed during the study period is probably caused by increased natural mortality due to sudden temperature changes or due to increased predation, rather than increased growth rates. The life-history strategy of shrimp in the Jan Mayen area can be explained by factors such as depth, temperature and population density variations caused by fluctuation in recruitment and mortality.The shrimp fisheries in the Jan Mayen area began in the late 1970s and reached an annual landing of 2000 tonnes in 1985, and since then landings have oscillated around 500 tonnes depending on a combination of factors. The survey indices of stock biomass varied between 3000 and 6600 tonnes. For most years, the highest shrimp densities are at a depth of 200–299 m, while large shrimp (and therefore also female shrimp) are dominant at depths greater than 300 m.Fish community data were studied as the composition of the demersal fish community is an integrated response to environmental conditions and as predation affects the shrimp stock. Polar cod and capelin are the most abundant fish species in the study area. A high number of blue whiting was registered in 1979, but the number declined in 1980 and 1981 as temperature decreased. During the surveys in 1994 and 1995, no blue whiting was registered. A few individuals were found again in the 1999 samples. The number of Greenland halibut has declined from the beginning of the 1980s to the 1990s.  相似文献   

7.
Compressional (VP) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05–5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.  相似文献   

8.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

9.
 Hydrothermal vent fields south of the Garret Fracture zone were sampled for the isotope composition of helium and oxygen ([18O]H2O/[16OH2O). The helium isotopes end-member (3He / 4He=8.3×R a and [4He]≈1.2–2.4×10-5 cm3 STP g-1) is quite similar to other known hydrothermal sites pointing to the homogeneous helium composition of the upper mantle. The δ18O end-member value (δ18O≈0.5–0.6‰) confirms previous suggestions from other sites and from isotope modeling, that hydrothermal fluids are slightly enriched in 18O relative to the ocean as a result of water–rock interactions at high temperature. Received: 11 December 1995/Revision received: 20 December 1996  相似文献   

10.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
An analysis of the attenuation of seismic waves as measured by the quality factorQc (for coda waves) has been performed for the volcanic Jan Mayen island in the Norwegian Sea, using earthquakes near the Jan Mayen Fracture Zone and local seismic stations on the Jan Mayen island.Qc values of the order of 100 at a frequency of 1 Hz are found, increasing to about 300 at 10 Hz. These values are typical of what usually is observed in tectonically influenced areas near oceanic/continental plate boundaries. It is considered likely that these results are influenced by the fact that the Jan Mayen island, in spite of its proximity to a fracture zone, is located in the northern end of the Jan Mayen Ridge, which now is accepted as being a micro-continent. The presence of the active Beerenberg volcano on the Jan Mayen island does give rise to a somewhat stronger attenuation for waves traversing that area, but this effect is weak and quite limited in spatial extent. There is also a slight increase in attenuation as a function of depth, but less than what is observed in terms of lateral variations. This is reasonable in view of the very strong lateral variations in lithospheric structure exhibited in this area.  相似文献   

12.
The spatial distribution of the primary production (PP) and the chlorophyll a concentration (Chl) were investigated during two research cruises in the Drake Passage area in October–November of 2007 and 2008. The algorithm evaluating the integral PP (PPint) for the water column in this area was developed based on the data on the surface chlorophyll (Chls) and the incident solar irradiance obtained in 2004–2008 in the Atlantic Sector of the Southern Ocean. The results obtained both by the experimental and model approaches suggested that the Polar Front (PF) region of the Drake Passage was characterized by low values of both the PPint (<100 mg C/m2 per day) and Chls (0.08–0.20 mg/m3) in October–November. Low values of the Chls and relatively high phaeophytine a concentrations indicated the winter succession state of the phytoplankton community in the Antarctic Ocean and the southern Polar Frontal Zone (PFZ). The seasonal warming of the surface water layers and the developing pycnocline resulted in a phytoplankton bloom and a Chls concentration of more than 1 mg/m3 in mid-November in this area and the Subantarctic waters.  相似文献   

13.
Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two 14C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20–17, 12.5, 11–9.5, and 5–4.8 ka b.p., whereas smectite accumulation is higher between 17 and 12.5, and after 9 ka b.p. The climate may have been predominantly arid at 17 (20–17), 12.5, 10.5 (11–9.5), and 4.8 ka b.p. The first three dates correspond to the last glacial maximum, Bolling-Allerod, and Younger Dryas events, respectively. The SW monsoon was variable between 17 and 15 ka b.p., and it was more stable and intense after the Younger Dryas until about 6 ka b.p. Received: 2 December 1999 / Revision accepted: 11 April 2000  相似文献   

14.
We have measured helium isotopic ratios of thirty-seven Pacific water samples from various depths collected in adjacent regions of Honshu, Japan. The 3He/4He ratios vary significantly from 0.989 R atm to 1.208 R atm where R atm is the atmospheric ratio of 1.39 × 10−6. The mid-depth (750–1500 m) profile of 3He/4He ratios at ST-1 located Northwestern Pacific Ocean east of Japan (Off Joban; 37°00′ N, 142°40′ E) is significantly different from that at ST-2 of the Northern Philippine Sea south of Japan (Nankai Trough; 33°07′ N, 139°59′ E), suggesting that these waters were separated by a topographic barrier, the Izu-Ogasawara Ridge. Taking 3He/4He data of the Geosecs expeditions in the western North Pacific, an extensive plume of 15% excess 3He relative to the air may be traced at ST-1 over 12,000 kilometers to the northwest of the East Pacific Rise where the mantle helium may originate. The 20% excess found at ST-2 may be attributable to the additional source of the subduction-type mantle helium in the Okinawa Trough. A 15% excess of 3He has also been discovered at a depth of about 1000∼1500 m at ST-3 adjacent to Miyakejima Island (33°57′ N, 139°22′ E) and ST-4 of Sagami Bay (35°00′ N, 139°22′ E). It is confirmed that mid-depth all over the western North Pacific water is affected by the mantle helium with a high 3He/4He ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
As part of the European Subpolar Ocean Programme (ESOP), the German research icebreaker Polarstern worked in the Greenland Sea in the late winter of 1993. Whilst on passage, the ship encountered a severe winter storm with winds consistently above 20 m s−1 coupled to air temperatures of below −10°C. The underway sensors revealed heat fluxes of greater than 700 W m−2 across most of the Nordic Basin, peaking at greater than 1200 W m−2 when the ship crossed the cold, fresh water of the Jan Mayen Current. This large heat flux coupled to the unique hydrographic conditions present in the Jan Mayen Current allowed sea-ice generation in the form of frazil ice at a rate of 28 cm d−1. This frazil ice then developed into pancake ice. Measurements also were made in the late winter beneath this pancake ice in two remnants of the Odden. In the Jan Mayen Current, hydrographic conditions are such that the ice can exist for a long period of time before eventually decaying due to short-wave radiation at the surface. Towards the centre of the Greenland Sea, hydrographic measurements reveal that the ice is more transient and decays four times more rapidly than ice in the Jan Mayen Current. We discuss the development of the Odden ice tongue in light of these results and add evidence to the argument that the eventual fate of the water stored in the ice is important and could be a relevant factor in the formation of Greenland Sea Deep Water.  相似文献   

17.
The northeastern high-latitude North Atlantic is characterised by the Bellsund and Isfjorden fans on the continental slope off west Svalbard, the asymmetrical ultraslow Knipovich spreading ridge and a 1,000 m deep rift valley. Recently collected multichannel seismic profiles and bathymetric records now provide a more complete picture of sedimentary processes and depositional environments within this region. Both downslope and alongslope sedimentary processes are identified in the study area. Turbidity currents and deposition of glacigenic debris flows are the dominating downslope processes, whereas mass failures, which are a common process on glaciated margins, appear to have been less significant. The slide debrite observed on the Bellsund Fan is most likely related to a 2.5–1.7 Ma old failure on the northwestern Barents Sea margin. The seismic records further reveal that alongslope current processes played a major role in shaping the sediment packages in the study area. Within the Knipovich rift valley and at the western rift flank accumulations as thick as 950–1,000 m are deposited. We note that oceanic basement is locally exposed within the rift valley, and that seismostratigraphic relationships indicate that fault activity along the eastern rift flank lasted until at least as recently as 1.5 Ma. A purely hemipelagic origin of the sediments in the rift valley and on the western rift flank is unlikely. We suggest that these sediments, partly, have been sourced from the western Svalbard—northwestern Barents Sea margin and into the Knipovich Ridge rift valley before continuous spreading and tectonic activity caused the sediments to be transported out of the valley and westward.  相似文献   

18.
We report some main results of multidisciplinary investigations carried out within the framework of the Indian National Gas Hydrate Program in 2002–2003 in the Krishna–Godavari Basin offshore sector, east coast of India, to explore indicators of likely gas hydrate occurrence suggested by preliminary multi-channel seismic reflection data and estimates of gas hydrate stability zone thickness. Swath bathymetry data reveal new evidence of three distinct geomorphic units representing (1) a delta front incised by several narrow valleys and mass flows, (2) a deep fan in the east and (3) a WNW–ESE-trending sedimentary ridge in the south. Deep-tow digital side-scan sonar, multi-frequency chirp sonar, and sub-bottom profiler records indicate several surface and subsurface gas-escape features with a highly resolved stratification within the upper 50 m sedimentary strata. Multi-channel seismic reflection data show the presence of bottom simulating reflections of continuous to discrete character. Textural analyses of 76 gravity cores indicate that the sediments are mostly silty clay. Geochemical analyses reveal decreasing downcore pore water sulphate (SO4 2−) concentrations (28.7 to <4 mM), increasing downcore methane (CH4) concentrations (0–20 nM) and relatively high total organic carbon contents (1–2.5%), and microbial analyses a high abundance of microbes in top core sediments and a low abundance of sulphate-reducing bacteria in bottom core sediments. Methane-derived authigenic carbonates were identified in some cores. Combined with evidence of gas-escape features in association with bottom simulating reflections, the findings strongly suggest that the physicochemical conditions prevailing in the study area are highly conducive to methane generation and gas hydrate occurrence. Deep drilling from aboard the JOIDES Resolution during 2006 has indeed confirmed the presence of gas hydrate in the Krishna–Godavari Basin offshore.  相似文献   

19.
Tidal currents in the Tsushima Straits have been analyzed using measurements obtained since February 1997 by an acoustic Doppler current profiler (ADCP) mounted on the ferryboat Camellia. Tidal current constituents (M 2, S 2, K 1, O 1) are dominant among the ten tidal current constituents (Q 1, O 1, P 1, K 1, N 2, M 2, S 2, K 2, MSf, Mf), and generally 1.4–2.1 times stronger at the western channel of the straits than those at the eastern channel. The ratio between amplitude of M 2, S 2, K 1 and O 1 averaged along the ferryboat track is 1:0.45:0.59:0.51. The major axis directions of tidal current ellipses are generally SW to NE, exceptionally in the vicinity of the Tsushima Islands. Approaching the Tsushima Islands from the Korean Peninsula side, the major axis gradually rotates clockwise. At the western channel, the M 2 and K 1 constituents change the rotation direction of current vectors from clockwise to counterclockwise at about 90–130 m depth. The contributions of the tidal currents to the mean kinetic energy and the mean eddy kinetic energy along the ferryboat track are, on average, 0.56 and 0.71, respectively. This suggests that tidal current activities are generally more dominant than the mean current activities and much more dominant than eddy activities. The only region where the eddy activities are comparable to the tidal current activities is located on the east side of the Tsushima Islands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Sea floor spreading anomalies in the Lofoten-Greenland basins reveal an unstable plate boundary characterized by several small-offset transforms for a period of 4 m.y. after opening. North of the Jan Mayen Fracture Zone, integrated analysis of magnetic and seismic data also document a distinct, persistent magnetic anomaly associated with the continent-ocean boundary and a locally, robust anomaly along the inner boundary of the break-up lavas. These results provide improved constraints on early opening plate reconstructions, which include a new anomaly 23-to-opening pole of rotation yielding more northerly relative motion vectors than previously recognized; and a solution of the enigmatic, azimuthal difference between the conjugate Eocene parts of the Greenland-Senja Fracture Zone if the Greenland Ridge is considered a continental sliver. The results confirm high, 2.36–2.40 cm yr–1, early opening spreading rates, and are consistent with the start of sea floor spreading during Chron 24r. The potential field data along the landward prolongations of the Bivrost Fracture Zone suggest that its location is determined by a Mesozoic transfer system which has acted as a first-order, across-margin tectono-magmatic boundary between the regional Jan Mayen and Greenland-Senja Fracture Zone systems, greatly influencing the pre-, syn- and post-breakup margin development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号