首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study examined the effects of different soil texture configurations on water movement and solute transport to provide a reliable scientific basis for the application of negative‐pressure irrigation (NPI) technology. HYDRUS‐2D was used to analyse water movement and solute transport under NPI. The main results are as follows: (a) HYDRUS‐2D can be used to simulate water movement and solute transport under NPI, as there was good agreement between the simulated and measured values for water contents, NaCl concentrations, cumulative water infiltration, and wetting distances in the horizontal and vertical directions; the Nash–Sutcliffe efficiency coefficients were in the range of 0.94–0.97. (b) Layered soils have obvious effects on water movement under NPI. With the emitter position in the loam layer, when a coarse texture of loamy sand was present below the loam layer (namely, L‐LS), irrigation water accumulated in the topsoil, and this led to an increase in evaporation compared with the homogeneous loam profile. However, fine texture silty loam or silty clay loam layers beneath the loam layer (namely, L‐SiL or L‐SiCL, respectively) was more conducive to water infiltration into the lower layer, and this increased the amount of water infiltration and simultaneously reduced the surface evaporation effectively. (c) Layered soils have obvious effects on solute transport under NPI, and salt accumulation will readily occur in the clay‐rich soil layer at the interface. The maximum soil salt accumulation of L‐LS occurred above the soil interface between the two soil layers with a value of 21.80 g/kg; however, for L‐SiCL and L‐SiL, the maximum salt accumulation occurred below the soil interface between the two soil layers, with values of 23.80 g/kg and 20.08 g/kg, respectively. (d) Interlayered soils showed remarkable changes in the water infiltration characteristics and salt‐leaching intensities under NPI, and the properties for the soil profile with a silty loam interlayer were better than those for the soil profile with a silty clay loam interlayer. The soil profile with a loamy sand interlayer had the lowest amount of water infiltration, which resulted in reductions of the salt‐leaching intensities. Thus, NPI is clearly not suitable for loamy sand soil. Overall, the results demonstrated that soil texture configurations affected water movement and solute transport under NPI. Therefore, careful consideration should be given to the use of NPI to achieve target soil water and solution conditions and reduce water loss.  相似文献   

3.
The objective of this study was to examine the possibility of determining soil erodibility of loamy soils with small flumes. This was done by comparing the classification of soil erodibility obtained in the field with that obtained in the laboratory. Therefore twenty soils with a texture varying from silty loam to sandy loam were selected from the Leuven region. The erosion in the field was determined by measuring the volumetric evolution of the rill pattern. In the laboratory the soils were tested with a rainfall simulator and small flumes. The conclusion was that for loamy soils the flume experiments are a quick, simple, and reliable method for the determination of the relative soil erodibility.  相似文献   

4.
Currently, vadose zone monitoring is required under the Resource Conservation and Recovery Act (RCRA) only at land treatment facilities. Contaminant leak detection through ground water monitoring is very important, but it is considered to be after the fact. Remedial action costs can be reduced considerably by monitoring the vadose zone for compounds that exhibit high rates of movement. Volatile organic compounds (VOCs) exhibit this property and are present at many municipal landfills, recycling facilities, and treatment storage and disposal facilities (TSDFs). Through the authors'personal experience, it has been noted that gaseous phase transport of VOCs through the vadose zone is at least an order of magnitude greater than advective transport of VOCs in ground water. Therefore, VOCs in soil gas are an effective early warning leak detection parameter. Downward movement of leachate can be intercepted by porous cup lysimeters. Attenuation in the vadose zone slows the apparent movement of contaminants; however, it is only a matter of time before leachate reaches the water table. The authors believe that soil-gas and pore-water monitoring should and eventually will be required at all RCRA sites. If vadose zone monitoring becomes an additional requirement under RCRA, both the facility owner and the taxpayer will benefit. During the interim, facility owners can benefit by employing vadose zone monitoring techniques coupled with either qualitative or quantitative chemical analyses.  相似文献   

5.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

6.
The U.S. Environmental Protection Agency (EPA) recently proposed to amend federal regulations to require vadose zone monitoring at certain hazardous waste facilities. To support this proposal, EPA evaluated previous policy on vadose zone monitoring and examined advances in vadose zone monitoring technology. Changes in EPA vadose zone monitoring policy were driven by demonstrated advances in the available monitoring technology and improvements in understanding of vadose zone processes/When used under the appropriate conditions, currently available direct and indirect monitoring methods can effectively detect contamination that may leak from hazardous waste facilities into the vadose zone. Direct techniques examined include soil-core monitoring and soil-pore liquid monitoring. Indirect techniques examined include soil-gas monitoring, neutron moderation, complex resistivity, ground-penetrating radar, and electrical resistivity. Properly designed vadose zone monitoring networks can act as a complement to saturated zone monitoring networks at numerous hazardous waste facilities. At certain facilities, particularly those in arid climates where the saturated zone is relatively deep, effective vadose zone monitoring may allow a reduction in the scope of saturated zone monitoring programs.  相似文献   

7.
The interaction effects of different applied ratios of a hydrophilic polymer (Superab A200) (0, 0.2, 0.6% w/w) under various soil salinity levels (initial salinity, 4 and 8 ms/cm) were evaluated on available water content (AWC), biomass, and water use efficiency for corn grown in loamy sand and sandy clay loam soils. The results showed that the highest AWC was measured at the lowest soil salinity. The application of 0.6% w/w of the polymer at the lowest salinity level increased the AWC by 2.2 and 1.2 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. The analysis of variance of data showed that the effect of salinity was significant on biomass and water use efficiency of corn in the loamy sand and sandy clay loam soils. The highest amounts of these traits were measured in soils with the lowest salinity level. Application of polymer at the rate of 0.6% in the loamy sand soil and at the rate of 0.2% in the sandy clay loam soil resulted in the highest aerial and root biomass and water use efficiency for corn. At these polymer rates the amounts of water use efficiency for corn were 2.6 and 1.7 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. Thus, the use of hydrophilic polymer in soils especially in the sandy soils increases soil water holding capacity, yield, and water use efficiency of plant. On the other hand, decreases the negative effect of soil salinity on plant and helps for irrigation projects to succeed in arid and semi‐arid areas.  相似文献   

8.
Twenty soils from the Leuven region were tested in the laboratory with a rainfall simulator. Their texture varied from loam to loamy sand. On the basis of the results obtained, they were classified as a function of the runoff and splash erodibility. For every soil, several properties were determined and tentatively used to explain the classifications based on the runoff and splash erodibility. Significant negative correlations were found between silt content, aggregate stability, C5–10 index, water content at saturation, and cohesion on the one side and erodibility on the other; a positive correlation was found between sand content and erodibility.  相似文献   

9.
Two lysimeters with the same dimensions were provided, and filled with the same loam clay. On the soil surface of one lysimeter, grass was planted to compare the hydrologic response of the grassed lysimeter with that of the other bare soil lysimeter.

About half of the runoff from the bare soil lysimeter occurred as overland flow, the rest being groundwater flow. Overland flow scarcely occurred from the grassed lysimeter. Grass roots that developed deep into the soil layer play an important role in increasing the infiltration rate as well as in drying the soil uniformly throughout the soil layer by evapotranspiration, preparing for high infiltration and large rainwater storage for the subsequent rainfall event. Accordingly, the total loss by evapotranspiration from the grassed soil amounts to almost twice that from the bare soil.

For an evaporation- and evapotranspiration-prohibited experiment, the recession characteristics from a saturation state showed similar features for the bare and grassed soils, indicating the same microstructure of high moisture reservability for both soils.

The well-developed grass root system reformed the soil structure considerably to produce the seemingly contradicting characteristics of high moisture conductivity and high moisture reservability; i.e. a high infiltration rate and prolonged groundwater discharge.

Finally, the importance of the initial soil moisture in the rainfall-runoff process, rainfall loss and runoff ratio is stressed.  相似文献   


10.
Increasingly, regulations by federal, state and local agencies are being developed that require the installation of vadose zone monitoring systems for hazardous chemical facilities in addition to, or in lieu of, conventional ground water monitoring wells. Compared to a ground water monitoring approach, vadose zone monitoring systems may permit earlier detection of chemical leakage and less costly cleanup of contamination. The effective use of vadose zone monitoring systems in detecting contamination depends on many factors. Without proper consideration of these factors, a vadose zone monitoring system may not give as high a level of reliability as a ground water monitoring system.
Major factors to consider in installing a vadose zone monitoring system are: type of instrument to use, number of instruments, depth and location of instruments, and frequency of monitoring. Means to evaluate these factors in a comprehensive fashion have been lacking. Based on recent experience in installing and operating vadose zone monitoring systems, criteria and methods useful in resolving the preceding factors have been developed. Types of instruments can be classified as either direct (lysimeter, vapor probe) or indirect (tensiometer, conductivity probe). A combination of the two is needed for reliability. The depth, location and number of instruments depend on the geometry of the facility, the number and size of likely contaminant leakage points in engineered barriers, properties of the material being monitored, the effective radius of monitoring for each instrument, vadose zone properties, and types of remedial actions that are available. The freqency of monitoring largely depends on the rate of movement of the contaminant. Evaluating the preceding factors requires some level of modeling and preliminary field testing.  相似文献   

11.
Vapor intrusion (VI) involves migration of volatile contaminants from subsurface through unsaturated soil into overlying buildings. In 2015, the US EPA recommended an approach for screening VI risks associated with gasoline releases from underground storage tank (UST) sites. Additional assessment of the VI risk from petroleum hydrocarbons was deemed unnecessary for buildings separated from vapor sources by more than recommended vertical screening distances. However, these vertical screening distances did not apply to potential VI risks associated with releases of former leaded gasoline containing 1,2-dichloroethane (1,2-DCA), because of a lack of empirical data on the attenuation of 1,2-DCA in soil gas. This study empirically evaluated 144 paired measurements of 1,2-DCA concentrations in soil gas and groundwater collected at 47 petroleum UST sites combined with BioVapor modeling. This included (1) assessing the frequency of 1,2-DCA detections in soil gas below 10−6 risk-based screening levels at different vertical separation distances and (2) comparing the US EPA recommended vertical screening distances with those predicted by BioVapor modeling. Vertical screening distances were predicted for different soil types using aerobic biodegradation rate constants estimated from the measured soil-gas data combined with conservative estimates of source concentrations. The modeling indicates that the vertical screening distance of 6 feet (1.8 m) recommended for dissolved-phase sources is applicable for 1,2-DCA below certain threshold concentrations in groundwater, while 15 feet (4.6 m) recommended for light nonaqueous phase liquid (LNAPL) sources is applicable for sites with clay and loam soils in the vadose zone, but not sand, if 1,2-DCA concentrations in groundwater exceed 150 μg/L. This dependence of the predicted vertical screening distances on soil type places added emphasis on proper soil characterization for VI screening at sites with 1,2-DCA sources. The soil-gas data suggests that a vertical screening distance of 15 feet (4.6 m) is necessary for both dissolved-phase and LNAPL sources.  相似文献   

12.
An understanding of splash erosion is the basis to describe the impact of rain characteristics on soil disturbance. In typical splash cup experiments, splashed soil is collected, filtered, and weighed. As a way to collect additional data, our experiments have been supplemented by a photogrammetric approach. A total of three soils were tested across three sites, one in the Czech Republic and two in Austria, all equipped with rain gauges and disdrometers to measure rainfall parameters. The structure from motion multiview stereo (SfM-MVS) photogrammetric method was used to measure the raindrops impact on the soil surface. The images were processed using Agisoft PhotoScan, resulting in orthophotos and digital elevation models (DEMs) with a resolution of 0.1 mm/pix. The surface statistics included the mean surface height (whose standard deviation was used as a measure of surface roughness), slope, and other parameters. These parameters were evaluated depending on soil texture and rainfall parameters. The results show a linear correlation between consolidation and splash erosion with a coefficient of determination (R2) of approximately 0.65 for all three soils. When comparing the change in soil volume with rainfall parameters, the best correlation was found with the maximum 30-minintensity (I30), resulting in R2 values of 0.48 (soil A, silt loam, 26% clay), 0.59 (soil B, silt loam, 18% clay), and 0.68 (soil C, loamy sand, 12% clay). The initial increase in the sample volume for the lowest splashed mass corresponds with the increase in the clay content of each of the soils. Soil A swells the most. Soil B swells less. Soil C does not swell at all and consolidates the most. We derived the relationship between the photogrammetrically measured change in surface height and the splash erosion (measured by weight) by accounting for the effect of the clay content.  相似文献   

13.
Air-borne passive microwave remote sensors measure soil moisture at the footprint scale, a scale of several hundred square meters or kilometers that encompasses different characteristic combinations of soil, topography, vegetation, and climate. Studies of within-footprint variability of soil moisture are needed to determine the factors governing hydrologic processes and their relative importance, as well as to test the efficacy of remote sensors. Gridded ground-based impedance probe water content data and aircraft-mounted Electronically Scanned Thinned Array Radiometer (ESTAR) pixel-average soil moisture data were used to investigate the spatio-temporal evolution and time-stable characteristics of soil moisture in three selected (LW03, LW13, LW21) footprints from the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Better time-stable features were observed within a footprint containing sandy loam soil than within two pixels containing silty loam soil. Additionally, flat topography with split wheat/grass land cover produced the largest spatio-temporal variability and the least time stability in soil moisture patterns. A comparison of ground-based and remote sensing data showed that ESTAR footprint-average soil moisture was well calibrated for the LW03 pixel with sandy loam soil, rolling topography, and pasture land cover, but improved calibration is warranted for the LW13 (silty loam soil, rolling topography, pasture land) and LW21 (silty loam soil, flat topography, split vegetation of wheat and grass land with tillage practice) pixels. Footprint-scale variability and associated nonlinear soil moisture dynamics may prove to be critical in the regional-scale hydroclimatic models.  相似文献   

14.
Until recently, there was little information available on the water collection capabilities of pore water samplers. This study was conducted to evaluate the performance of ceramic, fritted-glass, stainless steel, and polytetrafluoroethylene (PTFE) porous samplers in sand and silt loam soil columns over a range of soil water potentials. Soil solution intake for samplers was determined by application of constant and falling vacuums. Constant vacuum was applied for a three-day period when soils were at field moisture capacity. The PTFE samplers did not function when tested with a constant or falling vacuum. With a 50-kPa constant vacuum, the ceramic sampler collected the greatest sample volume (average 20 mL) from the sand. With a constant 25-kPa vacuum, the stainless steel sampler collected the greatest sample volume (average 81 mL) from the silt loam soil. Sampler performance with a fixed volume of vacuum was evaluated by applying 100 kPa vacuum to a 1-liter reservoir. With this falling vacuum, samplers were tested until no further solution was collected over a 10-day test period. With a falling vacuum, fritted-glass and stainless steel samplers, with relatively larger pores and greater hydraulic conductance, collected a greater volume of sample and at a faster rate than ceramic samplers in sand soil that was nearly saturated. When the volume was normalized with respect to sampler surface area, for the falling vacuum tests in silt loam soil at field moisture capacity, the volume collected by fritted glass was significantly higher than those from other samplers. In sand at field moisture capacity or silt loam at soil water tensions ≧30 kPa, ceramic samplers maintained vacuums near 70 kPa and collected more sample than the other samplers during the 10-day test period.  相似文献   

15.
Four questions relative to suction lysimeter performance have been raised by operators of land treatment systems. These questions deal with plugging of the porous segments of the lysimeters, soil suction operational ranges, adsorption onto and screening by the materials comprising the various lysimeter parts, and loss of volatile organics under negative pressures. This article first describes the physical operation of a lysimeter, the characteristics of the lysimeters tested (high- and low-flow lysimeters with porous ceramic cups and lysimeters with porous PTFE (polytetrafluo-roethylene) cups, and procedures followed in preparing them for testing. The results of experiments dealing with the first two questions plugging and operational ranges are then discussed. It was found that the intake rate of suction lysimeters placed in the vadose zone, in most types of soils, will initially drop off rapidly, but will stabilize after about 15 liters of moisture have been drawn through the porous cups. Packing a crystalline silica flour slurry around the cups of PTFE lysimeters negates most of the plugging associated with finer particles in soils. The effective operating range of ceramic lysimeters is between 0 and 60 centibars of suction independent of the use of silica flour. The operating range of PTFE lysimeters without silica flour is extremely narrow, but with the use of silica flour is extended to about 7 centibars of suction. The testing program indicates that all lysimeters should be checked for leaks using pressure techniques before field installation and that lysimeters have "dead" spaces, or reservoirs of from 34 to 80 mL of moisture that cannot be extracted from the cups, which must be taken into account when determining moisture collection rates. Information gathered in the test program is planned for inclusion in an EPA guidance document entitled "Unsaturated Zone Monitoring at Hazardous Waste Land Treatment Units."  相似文献   

16.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

17.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

18.
Traditional monitoring methods using chemical analysis of ground water samples to detect pollutant migration are being superseded or used in conjunction with innovative approaches. A need to detect pollutants before they reach the water table has drawn interest to vadose (unsaturated) zone monitoring and brought together hydrogeologists, soil scientists and agricultural engineers who have been working on this subject for years.
Recent studies have identified over 50 different types of vadose zone monitoring devices and methods that have optimum utility in varying hydrogeologic settings. In general, measurements made in the vadose zone are trying to define storage, transmission of liquid waste in terms of flux and velocity, and pollutant mobility.
Criteria for the selection of alternative vadose zone monitoring methods are important for the development of site-specific systems. These criteria include: type of site; applicability to new, active, and abandoned sites; power requirements; depth limitations; multiple use capability; type of data collection system; reliability and life expectancy; degree of operational complexity; direct versus indirect methods; applicability to alternate media; effect on flow regime; and effect of hazardous waste on sampling or measurements. Application of the selection criteria is discussed in Everett et al. (1982a).  相似文献   

19.
通过对武汉市区3个主要地质单元共8 305个剪切波速数据的分析整理,分别运用线性函数、一元二次多项式函数、指数函数对武汉市区不同地貌单元不同土类的剪切波速与深度的关系进行统计回归,得到其经验关系。结果表明,武汉市区土体剪切波速与埋深相关性比较明显;一元二次多项式函数的拟合效果最好。将实测数据与利用经验关系得到的预测值进行对比检验,两者基本吻合,可供武汉市区场地剪切波速数据缺乏时参考使用。  相似文献   

20.
收集天津地区近年来有代表性的具有完整土动力学参数作为实验数据的地震安全性评价报告66份,用两种统计方法按不同深度统计分析粉质黏土、黏土、粉土、砂土、淤泥质土等的实测土动力学参数,给出动剪切模量比和阻尼比平均值。选取2个典型工程场地,构建土层分析模型,进行土层地震反应分析计算。结果表明,本文得到的统计2值在天津地区具有一定的代表性和适用性,与实测值结果更为接近。对于获得原状土样困难的场地,特别是对于较薄的夹层土,可参照统计2结果进行分析计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号