首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Observations of ice movements across the British Isles and of sea-level changes around the shorelines during Late Devensian time (after about 25 000 yr BP) have been used to establish a high spatial and temporal resolution model for the rebound of Great Britain and associated sea-level change. The sea-level observations include sites within the margins of the former ice sheet as well as observations outside the glaciated regions such that it has been possible to separate unknown earth model parameters from some ice-sheet model parameters in the inversion of the glacio-hydro-isostatic equations. The mantle viscosity profile is approximated by a number of radially symmetric layers representing the lithosphere, the upper mantle as two layers from the base of the lithosphere to the phase transition boundary at 400 km, the transition zone down to 670 km depth, and the lower mantle. No evidence is found to support a strong layering in viscosity above 670 km other than the high-viscosity lithospheric layer. Models with a low-viscosity zone in the upper mantle or models with a marked higher viscosity in the transition zone are less satisfactory than models in which the viscosity is constant from the base of the lithosphere to the 670 km boundary. In contrast, a marked increase in viscosity is required across this latter boundary. The optimum effective parameters for the mantle beneath Great Britain are: a lithospheric thickness of about 65 km, a mantle viscosity above 670 km of about (4-5) 1020 Pa s, and a viscosity below 670 km greater than 4 × 1021 Pa s.  相似文献   

2.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

3.
Summary. This paper explores the middle ground between complex thermally-coupled viscous flow models and simple corner flow models of island arc environments. The calculation retains the density-driven nature of convection and relaxes the geometrical constraints of corner flow, yet still provides semianalytical solutions for velocity and stress. A novel aspect of the procedure is its allowance for a coupled elastic lithosphere on top of a Newtonian viscous mantle. Initially, simple box-like density drivers illustrate how vertical and horizontal forces are transmitted through the mantle and how the lithosphere responds by trench formation. The flexural strength of the lithosphere spatially broadens the surface topography and gravity anomalies relative to the functional form of the vertical flow stresses applied to the plate base. I find that drivers in the form of inclined subducting slabs cannot induce self-driven parallel flow; however, the necessary flow can be provided by supplying a basal drag of 1–5 MPa to the mantle from the oceanic lithosphere. These basal drag forces create regional lithospheric stress and they should be quantifiable through seismic observations of the neutral surface. The existence of a shallow elevated phase transition is suggested in two slab models of 300 km length where a maximum excess density of 0.2 g cm−3 was needed to generate an acceptable mantle flow. A North New Hebrides subduction model which satisfies flow requirements and reproduces general features of topography and gravity contains a high shear stress zone (75 MPa) around the upper slab surface to a depth of 150 km and a deviatoric tensional stress in the back arc to a depth of 70 km. The lithospheric stress state of this model suggests that slab detachment is possible through whole plate fracture.  相似文献   

4.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

5.
Previous studies of the wander of the rotation pole associated with the Late Pleistocene glacial cycles indicate that the predicted polar wander speed is sensitive to the density jump at the 670 km discontinuity, the thickness of the elastic lithosphere, and the lower mantle viscosity. In particular, the M1 mode related to the density jump at 670 km depth has been shown to contribute a dominant portion of predicted polar wander speed for sufficiently small lower mantle viscosities. In this study, we examine the sensitivity of polar wander to variations in the viscosity of the viscoelastic lithosphere using simplified compressible Maxwell viscoelastic earth models. Model calculations for earth models with a viscoelastic lithosphere of finite viscosity indicate that the contribution of the M1 mode is similar to those associated with the density discontinuity at the core–mantle boundary (C0 mode) and the lithosphere (L0 mode). We speculate that this is due to the interaction between the M1 mode and the transient mode associated with the viscoelastic lithosphere, which reduces the magnitude of polar wander rates. Therefore, the M1 mode does not contribute a dominant portion of the predicted polar wander speed for earth models with a viscoelastic lithosphere of finite viscosity. In this case, predictions of polar wander speed as a function of lower mantle viscosity exhibit the qualitative form of an 'inverted parabola', as predicted for the J ˙2 curve. We caution, however, that these results are obtained for simplified earth models, and the results for seismological earth models such as PREM may be complicated by the interaction between the M1 mode and the large set of transient modes.  相似文献   

6.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   

7.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

8.
The conductivity structure of the Earth's mantle was estimated using the induction method down to 2100  km depth for the Europe–Asia region. For this purpose, the responses obtained at seven geomagnetic observatories (IRT, KIV, MOS, NVS, HLP, WIT and NGK) were analysed, together with reliable published results for 11  yr variations. 1-D spherical modelling has shown that, beneath the mid-mantle conductive layer (600–800  km), the conductivity increases slowly from about 1  S  m−1 at 1000  km depth to 10  S  m−1 at 1900  km, while further down (1900–2100  km) this increase is faster. Published models of the lower mantle conductivity obtained using the secular, 30–60  yr variations were also considered, in order to estimate the conductivity at depths down to the core. The new regional model of the lower mantle conductivity does not contradict most modern geoelectrical sounding results. This model supports the idea that the mantle base, situated below 2100  km depth, has a very high conductivity.  相似文献   

9.
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage.  相似文献   

10.
Broad-band data from South American earthquakes recorded by Californian seismic networks are analysed using a newly developed seismic wave migration method—the slowness backazimuth weighted migration (SBWM). Using the SBWM, out-of-plane seismic P -wave reflections have been observed. The reflection locations extend throughout the Earth's lower mantle, down to the core–mantle boundary (CMB) and coincide with the edges of tomographically mapped high seismic velocities. Modelling using synthetic seismograms suggests that a narrow (10–15 km) low- or high-velocity lamella with about 2 per cent velocity contrast can reproduce the observed reflected waveforms, but other explanations may exist. Considering the reflection locations and synthetic modelling, the observed out-of-plane energy is well explained by underside reflections off a sharp reflector at the base of the subducted lithosphere. We also detect weaker reflections corresponding to the tomographically mapped top of the slab, which may arise from the boundary between the Nazca plate and the overlying former basaltic oceanic crust. The joint interpretation of the waveform modelling and geodynamic considerations indicate mass flux of the former oceanic lithosphere and basaltic crust across the 660 km discontinuity, linking processes and structure at the top and bottom of the Earth's mantle, supporting the idea of whole mantle convection.  相似文献   

11.
We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ∼ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with   VSH > VSV   starting at ∼80 km under oceanic regions and ∼200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a   VSV > VSH   signature at ∼150–300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400–700 km depth), regions of subducted slab material are associated with   VSV > VSH   , while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric   VSH > VSV   in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that   VSH > VSV   is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes.  相似文献   

12.
Summary. An inversion of ISC travel-time data from selected earthquakes in the distance range 30°-90° to 53 stations in Central Europe has been used to model velocity down to 600 km depth. The model explains 0.1–0.2s of the residuals, as for other array studies, leaving 0.5 s unexplained as noise. The uppermost 100 km of the mantle and crust contains inhomogeneities that correlate remarkably well with the geology. This may be due to deep-seated thermal anomalies or, in some areas, to delays introduced by passage of the rays through sedimentary cover. The deeper anomalies are smaller and unrelated to those in the lithosphere, which suggests that the asthenosphere is decoupled from the rigid lithosphere. The structure at 600 km depth is again quite inhomogeneous and might be due to undulations of the 650 km discontinuity. The models show some suggestion of a high velocity slab trending from east to west beneath the Alps.  相似文献   

13.
Interpretation of satellite altimetry data as well as ship bathymetry data revealed strongly elongated anomalies roughly perpendicular to the mid-ocean ridges in the Indian and east Pacific oceans. A spectral analysis of gravity altimetry data along profiles parallel to the East Pacific Rise indicated wavelengths of about 150–180  km close to the ridge and about 250  km further away. A simple model of Rayleigh–Taylor instabilities developing at the base of the cooling lithosphere is discussed and applied to the data. By considering thermal diffusion and comparing Rayleigh–Taylor growth rates to the velocity of the thermal front in the cooling lithosphere, we are able to explain the observed anomalies by instabilities developing below the lithosphere in a layer with a viscosity of about 1019  Pa  s above an asthenospheric layer with a viscosity reduction of 2–3 orders of magnitude.  相似文献   

14.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

15.
Summary. Teleseismic P and S arrival times to North American stations are obtained from the ISC bulletins for the 10-yr period 1964–73, and relative travel-time delays are calculated with respect to standard tables. Station anomalies as well as variations of the delays with azimuth and epicentral distance from station are analysed, and the location of the velocity anomalies responsible for them is discussed. Inversion of the P delays to infer upper mantle velocity structure down to a depth of 700 km is obtained using three-dimensional blocks, as proposed by Aki, Christofferson & Husebye. Three layers can be resolved in this depth range. It is found that the heterogeneities responsible for the travel-time delays are primarily located in the first 250 km of the upper mantle, and that they correlate with surface features. Significant heterogeneities subsist to depths of at least 700 km and their broad scale pattern also correlates with the surface features: in the third layer (500 to 700 km depth) there is an increase of velocity from the West to the East of the United States, while the second layer (250 to 450 km depth) exhibits a reversed pattern. A tentative interpretation of these deeper anomalies is made, as being due mainly to topography of the major upper mantle discontinuities, near 400 and 650 km depth.  相似文献   

16.
Summary. The crustal structure beneath the exposed terranes of southern Alaska has been explored using coincident seismic refraction and reflection profiling. A wide-angle reflector at 8–9 km depth, at the base of an inferred low-velocity zone, underlies the Peninsular and Chugach terranes, appears to truncate their boundary, and may represent a horizontal decollement beneath the terranes. The crust beneath the Chugach terrane is characterized by a series of north-dipping paired layers having low and high velocities that may represent subducted slices of oceanic crust and mantle. This layered series may continue northward under the Peninsular terrane. Earthquake locations in the Wrangell Benioff zone indicate that at least the upper two low-high velocity layer pairs are tectonically inactive and that they appear to have been accreted to the base of the continental crust. The refraction data suggest that the Contact fault between two similar terranes, the Chugach and Prince William terranes, is a deeply penetrating feature that separates lower crust (deeper than 10 km) with paired dipping reflectors, from crust without such reflectors.  相似文献   

17.
The Canary Islands swell: a coherence analysis of bathymetry and gravity   总被引:2,自引:0,他引:2  
The Canary Archipelago is an intraplate volcanic chain, located near the West African continental margin, emplaced on old oceanic lithosphere of Jurassic age, with an extended volcanic activity since Middle Miocene. The adjacent seafloor does not show the broad oceanic swell usually observed in hotspot-generated oceanic islands. However, the observation of a noticeable depth anomaly in the basement west of the Canaries might indicate that the swell is masked by a thick sedimentary cover and the influence of the Canarian volcanism. We use a spectral approach, based on coherence analysis, to determine the swell and its compensation mechanism. The coherence between gravity and topography indicates that the swell is caused by a subsurface load correlated with the surface volcanic load. The residual gravity/geoid anomaly indicates that the subsurface load extends 600 km SSW and 800 km N and NNE of the islands. We used computed depth anomalies from available deep seismic profiles to constrain the extent and amplitude of the basement uplift caused by a relatively low-density anomaly within the lithospheric mantle, and coherence analysis to constrain the elastic thickness of the lithosphere ( Te ) and the compensation depth of the swell. Depth anomalies and coherence are well simulated with Te =28–36 km, compensation depth of 40–65 km, and a negative density contrast within the lithosphere of ∼33 kg m−3. The density contrast corresponds to a temperature increment of ∼325°C, which we interpret to be partially maintained by a low-viscosity convective layer in the lowermost lithosphere, and which probably involves the shallower parts of the asthenosphere. This interpretation does not require a significant rejuvenation of the mechanical properties of the lithosphere.  相似文献   

18.
The deep resistivity structure was estimated along a 400-km profile in central Poland crossing the Malopolska Massif (MM), the Lysogory Unit (LU), the Trans-European Suture Zone (TESZ) and ending at the East European Craton (EEC). Magnetotelluric transfer functions, corresponding to 20 sites, were supplemented by magnetovariational responses obtained at the geomagnetic observatories situated at the same tectonic units. Such a combination made it possible to extend the initial period range, which is from fractions of a second to several hours, up to months in order to reliably cover crustal and upper-mantle depths. The geoelectrical structures, revealed using 2-D inversions, do not contradict the known features of the lithosphere structure determined using seismic and gravity data along the profile.
The subsurface conductance, varying from approximately 10 Siemens at the inner part of the EEC to about 600 Siemens in the TESZ, is produced by sediments, the deep part of which contains conductive, highly mineralized water. The existence of two crustal conductive faults at the southwest and northeast of the TESZ were established mainly by the use of induction arrows. It was also revealed that rather high mantle conductivity beneath the MM, LU and TESZ at depths of about 150–200 km contrasts with the resistive upper mantle of the EEC. This can be interpreted as the decrease of asthenosphere conductance and/or as its submersion beneath the EEC. Generally, the results confirm the idea that the TESZ forms not only specific seismic boundaries but also causes peculiar conductivity anomalies in the crust and upper mantle.  相似文献   

19.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

20.
We present a two-layered finite difference model for the flexural response of the lithosphere to extensional faulting. The model allows for three modes of flexure: (1) fully coupled, with the upper crust and mantle welded together by the lower crust; (2) fully decoupled, with the upper crust and mantle behaving as independent layers; and (3) partly decoupled, signifying that the response of the upper crust to small-wavelength loads is superimposed on the response of the entire lithosphere to long-wavelength loads. Which of these modes of flexure is to be expected depends on the rheology and especially the thermal state of the lithosphere. Coupled behaviour is related to a cold and strong lithosphere. The Baikal Rift Zone provides a typical example for this mode of flexure. A fully decoupled lithosphere is an exceptional case, related to anomalous high temperatures in the lower crust, and is observed in the Basin and Range province. The most common case is a partly decoupled lithosphere, with the degree of decoupling depending on the thickness and viscosity of the lower crust. This is inferred, for example, for the Bay of Biscay margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号