首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the measurements of refractive index,specific gravity,unit cell parameter,and mineral chemistry and infrared absorption spectrum analyses of pyropes in kimberlites from China,systematic studies of the Physical properties and compositional variations of pyropes of different colors and diverse paragenetic types,within and between kimberlite provinces have been undertaken,The origin of pyropes in the Kimberlites and the depth of their formation have been discussed.Pyropes of the purple series are different from those of the orange series in physical and chemical properties,for exaple,pyropes of the puple series are higher in α0,RI,SG,Cr2O3,MgO,Cr/(Cr Al),Mg/(Mg Fe),and Mg/(Mg Ca),and lower in Al2O3,Fe2O3 FeO than those of the orange series.The classification of garnets in kimberlites from china by the Dawson and Stephens‘ method(1975) has been undertaken and clearly demonstrates that pyropes of diamond-rich kimberlites contain much more groups than those of diamond-poor,especially diamond-free kimberlites.The higher in α0,RI,SG,Cr2O(3.Cr/(Cr Al),knorringite and Cr-component the pyropes are ,the richer in diamond the kimberlites will be.The infrared absorption spectrum patterns of pyropes change with their chemical composition regularly,as reflected in the shape and position of infrared absorption peaks.Two absortpion bands at 862-901 cm^-1 will grade into degeneration from splitting and the absorption band positions of pyropes shift toward lower frequency with increasing Cr2O3 content and Cr/(Cr Al) ratio of pyropes,LREE contents of orange pyrope megacrysts are similar to those of porple pyrope macrocrysts,but the former is higher in HREE than the latter,showing their different chondrite-normalized patterns.The formation pressures of pyropes calculated by Cr-component,Ca-component,knorringite molecules of pyropes show that some pyropes of the purple series in diamondiferous kimberlites fall into the diamond stability field.but all pyropes of diamond-free kimberlites lie outside the diamond stability field.The megacrysts were formed through early crystallization of kimberlites magma at high pressure condition,the majority of the purple pyrope macrocrysts have been derived from disaggregated xenoliths but the minoirty of them appear to be fragments of the discrete megacryst pyropes,or phenocrysts.  相似文献   

2.
This paper reports new petrographic and mineralogical data on the Manchary kimberlite pipe, which was discovered south of Yakutsk (Central Yakutia) in 2007–2008, 100 km. The pipe breaks through the Upper Cambrian carbonate deposits and is overlain by Jurassic terrigenous rock masses about 100 m thick. It is composed of greenish-gray kimberlite breccia with a serpentine-micaceous cement of massive structure. The porphyry texture of kimberlite is due to the presence of olivine, phlogopite, and picroilmenite phenocrysts. The SiO2 and Al2O3 contents of the groundmass are indicative of typical noncontaminated kimberlites. The groundmass has a significant content of ore minerals: Fe- and Cr-spinels, perovskite, magnetite, and, less commonly, magnesian Cr-magnetite. Pyropes occur in kimberlites as sharp-edged fragments and show uneven distribution. Chemically, they belong to lherzolite, wehrlite, or nondiamondiferous dunite–harzburgite parageneses. Garnets corresponding to lherzolites of anomalous composition make up 8%; this is close to the garnet content of Middle Paleozoic kimberlites from the Yakutian kimberlite province. The pyropes from the new pipe are compositionally similar to those from diamond-poor Middle Paleozoic kimberlites in the north of the Yakutian diamondiferous province. Chemically, pyropes from the Manchary pipe and those from the modern alluvium of the Kengkeme and Chakyya Rivers differ substantially. Consequently, the rocks of the pipe could not be a source of pyropes for this alluvium. They probably occured from other sources. This fact along with numerous “pipelike” geophysical anomalies, suggest the existence of a new kimberlite field in Central Yakutia.  相似文献   

3.
The Buffalo Hills kimberlites define a province of kimberlite magmatism occurring within and adjacent to Proterozoic crystalline basement termed the Buffalo Head Terrane in north-central Alberta, Canada. The kimberlites are distinguished by a diverse xenocryst suite and most contain some quantity of diamond. The xenocryst assemblage in the province is atypical for diamondiferous kimberlite, including an overall paucity of mantle indicator minerals and the near-absence of compositionally subcalcic peridotitic garnet (G10). The most diamond-rich bodies are distinguished by the presence of slightly subcalcic, chromium-rich garnet and the general absence of picroilmenite, with the majority forming a small cluster in the northwestern part of the province. Barren and near-barren pipes tend to occur to the south, with increasing proximity to the basement structure known as the Peace River Arch. Niobian picroilmenite, compositionally restricted low-to moderate-Cr peridotitic garnet, and megacrystal titanian pyrope occur in kimberlites closest to the arch. Major element data for clinopyroxene and trace element data for garnet from diamond-rich and diamond-poor kimberlites suggests that metasomatism of lithospheric peridotite within the diamond stability field may have caused destruction of diamond, and diamond source rocks proximal to the arch were the most affected.  相似文献   

4.
Coexisting garnets and ilmenites have been synthesized at high pressure (21–40 kb) within the temperature range between 900 and 1100 °C from pyrolite-less-40% olivine and olivine basanite with various water contents. The two compositions yield phases with a range in the 100 Mg/Mg+Fe ratio for both garnet (41–76) and ilmenite (15–47). The distribution coefficient for iron and magnesiaum (K D(Fe, Mg) ilm-ga = 4.0±0.5) for coexisting phases does not appear to vary with change in the bulk composition or temperature of synthesis. The synthesized ilmenites are of similar composition to those of kimberlites in 100 Mg/Mg+Fe ratio and Al2O3 and Cr2O3 solid solution. Cr2O3 content in ilmenite is dependent on Cr2O3 in the bulk composition and also on Fe2O3 content of ilmenite. Fe2O3 content of ilmenite is very sensitive to f O2 and natural ilmenites from peridotites have formed under low f O2. Al2O3 solid solution in ilmenite as well as TiO2 in coexisting garnet tend to be higher with higher temperature. All the variety of compositions of ilmenites from kimberlites may be obtained from rocks rather close in composition to those used in experiments, within the same range of pressure and temperature but at variable oxygen fugacities.  相似文献   

5.
The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher δ13C P-type diamonds tend to have inclusions lower in SiO2 (ol), Al2O3 (opx, gt), Cr2O3, MgO, Mg(Mg + Fe) (ol, opx, gt) and higher in FeO (ol, opx, gt) and CaO (gt). Higher δ13C E-type diamonds tend to have inclusions lower in SiO2, Al2O3 (gt, cpx), MgO, Mg(Mg + Fe) (gt), Na2O, K2O, TiO2 (cpx) and higher in CaO, Ca(Ca + Mg) (gt, cpx).Consideration of a number of different models that have been proposed for the genesis of kimberlites, their xenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions.  相似文献   

6.
The petrological and geochemical characteristics of kimberlites from two Russian provinces of the northern East European craton (EEP) and the Siberian craton (SC) (especially the Yakutian diamondiferous province, YDP), and aphanitic kimberlites from the Jericho pipe (Canada) were compared for the elucidation of some aspects of the genesis of these rocks. The comparison of the EEP and YDP showed that they comprise identical rock associations with some variations in kimberlite composition between particular fields and regions, which are clearly manifested in the TiO2-K2O, TiO2-(Y, Zr, HREE), SiO2-MgO, SiO2-Al2O3, MgO-Ni, MgO-CO2, and MgO-H2O diagrams and in variations in light element ratios (Li/Yb, Be/Nd, and B/Nb). The compositions of YDP kimberlites are confined mainly to quadrant III; i.e., their source was mainly the depleted mantle, whereas the compositions of EEP kimberlites fall within all four quadrants in the fields of both enriched and slightly depleted mantle reservoirs. The initial (143Nd/144Nd) i ratio of kimberlites from the Yakutian collection is 0.5121–0.5126. The lead isotopic characteristics of the EEP and YDP kimberlites are similar to mantle values: 206Pb/204Pb of 16.19–19.14, 207Pb/204Pb of 15.44–15.61, and 208Pb/204Pb of 34.99–38.55. In the 207Pb/204Pb-206Pb/204Pb diagram, part of the kimberlites, including those from the Botuobiya pipe, fall within the lower part of the field of group I kimberlites from southern Africa near the Pb isotopic composition of the depleted mantle. It was shown that the chemical compositions of the aphanitic kimberlites of the Jericho pipe (supposedly approaching the composition of primary magmas) are similar to those of some individual kimberlite samples from the YDP and EEP. It was supposed that the initial kimberlite melt arrived from the asthenosphere and was enriched in water and other volatile components (especially CO2). During its ascent to the surface, the melt assimilated mantle components, primarily MgO; as a result, it acquired the compositional characteristics observed in kimberlites. Subsequent compositional modifications were related to diverse factors, including the type of mantle metasomatism, degree of melting, etc. We emphasized the importance of petrological and geochemical criteria (low contents of HREE and Ti in the rocks and a kimberlite source similar to BSE or EMI) for the estimation of the diamond potential of rocks.  相似文献   

7.
Carbonate-rich, SiO2-poor residua are developed in some kimberlites solidifying as ocelli, layers, or discrete dikes which satisfy petrographic definitions of carbonatite. Arguments that these rocks have mineralogies, antecedents, and comagmatic rocks differing from those of the carbonatites in alkaline rock complexes, including the specific observation that kimberlites and carbonatites contain ilmenites and spinels of different composition, have been used to refute the alleged kimberlite-carbonatite relationship. New microprobe analyses of ilmenites and spinels from carbonate-rich rocks associated with kimberlites in three South African localities correspond to spinels and ilmenites of carbonatites from alkalic complexes, or have characteristics intermediate between those of carbonatites and kimberlites. The ilmenites are distinguished from kimberlite ilmenites by higher MnO, FeTiO3, and Nb2O5, and by negligible Cr2O3. The spinels are distinguished from kimberlite spinels by their Al2O3 and Cr2O3 contents. There is clearly a genetic relationship between the kimberlites and the carbonate-rich rocks, despite the observation that their ilmenites and spinels are distinctly different, which indicates that the same observation is not a valid argument against a petrogenetic relationship between kimberlites and carbonatites. These rocks are among the diverse products from mantle processes influenced by CO2, and we believe that the petrogenetic links among them are forged in the upper mantle. We see insufficient justification to deny the name carbonatite to carbonate-rich rocks associated with kimberlites if they satisfy the petrographic definition in terms of major mineralogy.  相似文献   

8.
Representative sampling of a diamond-bearing basal horizon in the Carnian Stage (Upper Triassic) on the northeastern margin of the Siberian Platform revealed a wide spectrum of indicator minerals, first of all, garnets, whose compositions are the same as in the inclusions in the regional diamonds. Of special interest are garnets of potential eclogite paragenesis with an abnormally high impurity of MnO (0.5–3.2 wt.%), which was earlier detected in more than 20% of garnets present as inclusions in diamonds of northern Quaternary placers and recommended as a new mineralogical criterion for diamond presence. Subcalcic Cr-pyropes of dunite–harzburgite paragenesis were also found in variable amounts, from 0.7 to 3.9 rel.%, in the sample of 973 grains of pyropes of lherzolite and websterite parageneses. Three grains contain 11.9, 12.6, and 16 wt.% Cr2O3, which corresponds to the presence of 30–34% of Mg–Cr-knorringite component. Such pyropes have been revealed for the first time in the study region. Cr-spinels are a mixture of compositions typical of kimberlites and the regional alkali-ultrabasic rocks. All studied samples contain picroilmenites with a variable content of Cr2O3 impurity. Since Mg–Fe–Ca-garnets with Mg# < 35 can be partly hosted in metamorphic rocks of the Anabar Shield, the elevated content of Na2O impurity (> 0.09 wt.%) was also taken into account. The different contents of indicator minerals in the samples might be due to the variable composition of the diamond orebodies. The Carnian placers call for new systematic sampling. Special attention should be given to estimation of the composition of garnets of presumably eclogite paragenesis with elevated contents of TiO2, MnO, CaO, and Na2O and to search for perovskite and Nb-containing rutile. These minerals, together with zircons, are of interest for determining the U–Pb isotopic age of probable diamond orebodies—kimberlites.  相似文献   

9.
Using the ICP-MS method we have studied the isotope systematics of Sr and Nd as well as trace element composition of a representative collection of kimberlites and related rocks from the Siberian Platform. The summarized literature and our own data suggest that the kimberlites developed within the platform can be divided into several petrochemical and geochemical types, whose origin is related to different mantle sources. The petrochemical classification of kimberlites is based on persistent differences of their composition in mg# and in contents of indicator oxides such as FeOtot, TiO2, and K2O. The recognized geochemical types of kimberlites differ from one another in the level of concentration of incompatible elements as well as in their ratios.Most of isotope characteristics of kimberlites and related rocks of the Siberian Platform correspond to the earlier studied Type 1 basaltoid kimberlites from different provinces of the world: Points of isotopic compositions are in the field of primitive and weakly depleted mantle. An exception is one sample of the rocks from veins of the Ingashi field (Sayan area), which is characterized by the Sr and Nd isotopic composition corresponding to Type 2 micaceous kimberlites (orangeites).The most important feature of distribution of isotopic and trace-element compositions (incompatible elements) is their independence of the chemical rock composition. It is shown that the kimberlite formation is connected with, at least, two independent sources, fluid and melt, responsible for the trace-element and chemical compositions of the rock. It is supposed that, when rising through the heterogeneous lithosphere of the mantle, a powerful flow of an asthenosphere-derived fluid provoked the formation of local kimberlite chambers there. Thus, the partial melting of the lithosphere mantle led to the formation of contrasting petrochemical types of kimberlites, while the geochemical specialization of kimberlites is due to the mantle fluid of asthenosphere origin, which drastically dominated in the rare-metal balance of a hybrid magma of the chamber.  相似文献   

10.
PT parameters of crystallization have been determined for pyropes and Cr-diopsides from loose sediments of the Kola region, taking into account the chemical compositions of these minerals. Being either deep-seated xenocrysts or constituents of mantle xenoliths in kimberlites, pyropes and Cr-diopsides bear information on composition of the lithospheric mantle and its diamond resource potential. It was established that pyropes belong to the lherzolitic (45%), harzburgitic (30%), and eclogitic (25%) mineral assemblages. The Ni thermometry of pyropes yielded their formation temperature at 650–1250°C, which corresponds to a depth interval of 75–190 km. The distribution of different pyrope-bearing assemblages and their trace element composition allowed us to suggest a layered structure of the Kola lithospheric mantle. Its shallow unit (75–110 km) is mainly composed of depleted lherzolite; the medium-deep unit (110–170 km) consists of harzburgite, and the deep unit (170–190 km), of both lherzolite and harzburgite. About 16% of lherzolitic-harzburgitic pyropes were derived from the diamond mantle facies, i.e., from a depth of 140–190 km. Cr-diopsides are subdivided into two genetic groups: eclogitic (high Al2O3 and Na2O, low MgO and CaO) and ultramafic (high MgO, CaO, and Cr2O3; low Al2O3 and Na2O). The crystallization parameters of Cr-diopside from deep-seated ultramafic group were determined using the Cr-in-Cpx barometer and En-in-Cpx thermometer. Most samples fall into the graphite stability field (20–45 kbar and 700–1150°C). If these minerals were derived from kimberlites, this implies that the latter were constituents of carbonatite-ultramafic intrusions. Cr-diopsides may also be derived from diamond-free ultramafic xenoliths contained in alkaline ultramafic dikes. Nevertheless, 15% of Cr-diopside compositions fall in the field of diamond stability (55–60 kbar and 1000–1100°C). These conditions fit the geotherm characterizing a low heat flow. The results support the high resource potential of the Kola region for diamonds.  相似文献   

11.
本文百次研究了山东金伯利岩中橄榄石的产状、含量、大小、世代、形态、颜色、环带、矿物包体、折光率、2V、化学成分、端员组分特征及红外光谱和穆斯堡尔谱特征,并分析研究了橄榄石的成因。指出了无色—浅绿色的、含MgO、Cr2O3、NiO高的橄榄石是找金刚石矿的指示性矿物。  相似文献   

12.
New petrogeochemical data on a collection of 138 samples taken from 101 kimberlite bodies of the Alakit region of Yakutia have been interpreted. It was concluded that all studied kimberlites are homogenous in geochemical composition and comparable with Group I kimberlites of South Africa. Based on cluster analysis, kimberlites of the region are subdivided into six clusters. From the first to sixth clusters, kimberlites show a decrease in carbonate material and increase in magnesian component. The spatial distribution of clusters allowed us to distinguish zoned areas with central parts consisting of kimberlites with elevated CaO, CO2, Rb, Sr, Ba, and lowered contents of SiO2, TiO2, Fe2O3, FeO, MgO, V, Cr, and Ni. From the center outward, the values of δNd and (87Sr/86Sr)i decrease, which indicate increasing contribution of the lithospheric source. The formation of magnesian kimberlites at the periphery was related to the intense interaction of protokimberlite melt with lithospheric mantle, which was accompanied by metasomatic reworking of mantle rocks with formation of minerals of megacryst assemblage and assimilation of mantle material. Economically viable diamondiferous kimberlites are confined to the peripheral parts of distinguished zones, i.e., to the kimberlites of 5–6 clusters.  相似文献   

13.
Inclusions of mineral-forming environments in apatite-containing ijolites and magnetite–phlogopite–apatite ores in carbonatites were studied to elucidate the genesis of apatite mineralization in the Guli alkaline ultramafic carbonatite massif. Primary inclusions of carbonate–salt and carbonate melts have been discovered and studied. The carbonate–salt melt inclusions are of alkaline high-Ca composition and are enriched in P, Sr, SO3, and F (wt.%): CaO—30–40, Na2O—5–12, K2O—2–4, P2O5—1–3, SO3—1.5–3, and SrO—1–3. They also contain minor MgO, FeO, BaO, and SiO2 (tenths and hundredths of percent). The homogenization temperature of these inclusions is 850–970 °C. The carbonate inclusions contain predominant CaO (54–67 wt.%) and minor MgO, FeO, SrO, Na2O, and P2O5 (tenths of percent). Their homogenization temperature is 840–860 °C. Similar primary carbonate–salt and carbonate inclusions were found in garnet, and secondary ones were detected in silicate minerals (clinopyroxene and nepheline) of ijolites. Clinopyroxenes of ijolites also contain primary inclusions of alkaline ultramafic high-Ca melts similar in composition to melilitite-melanephelinites highly enriched in P, SO3, and CO2 (wt.%): SiO2—41–46, Al2O3—8–16, FeO—2–8, MgO—3–6, CaO—12–20, Na2O—2–9, K2O—1–6, P2O5—0.4–2.1, SO3—0.2–2.3, and Cl—0.02–0.35. According to the obtained data, apatite of the magnetite–phlogopite–apatite ores and ijolites of the Guli pluton crystallized from phosphorus-rich alkaline carbonate–salt melts at 850–970 °C. The generation of these melts was, most likely, due to the silicate–salt immiscibility in melilitite-melanephelinite melts highly enriched in salts, which occurred either at the final stages of clinopyroxene crystallization or during the formation of melilite. The presence of alkalies, S, F, and CO2 in spatially separated carbonate–salt melts contributed to the concentration and preservation of phosphorus in them at low temperatures, which led to the formation of apatite mineralization in ijolites and ore deposit in carbonatites.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

14.
The petrochemistry of kimberlites from Yakutia and Lesotho has been studied using a silicate melt model with the SiO2, CO2 and H2O derivatives as the main anions.A model has been developed, according to which the dissolution of H2O in an ultramafic melt results in orthosilicates (H2SiC 4 -2 , H3SiO 4 , H4SiO4 etc.) rather than metasilicates, while the dissolution of CO2 produces additional hydrocarbonate complexes. It suggests that at high PCO 2 1 , and where the orthosilicic calcium salt clusters are likely to be present in the magma, the kimberlite melt can break down into carbonate and silicate liquids. Therefore, the composition of kimberlite magma will be determined by the H2O/CO2 ratio under the relatively constant fluid pressure. This can be seen from the distinct fluidrs trend in the H2O-CO2-SiO2 diagram for the Yakutia and Lesotho diamond-bearing kimberlites. The H2O/CO2 ratio changes with the liquidus temperature along this trend (Perchuk and Vaganov 1977) which suggests that liquid immiscibility predominates over the simple CO2 solubility in the melts of kimberlite composition. The well-known Boyd's diagrams for the equilibrium PT-conditions in peridotites have been applied along with new experimental data to natural Cpx and Opx, and the PT-parameters were correlated for peridotite inclusions in kimberlite pipes in Yakutia and Lesotho. The liquidus temperatures for the extrapolated area of these correlations gave depths (pressures) at which kimberlite magmas are formed (200–250 km).The hypothesis on SiO2 partitioning between the melt and the fluid was used to calculate the composition of dry initial kimberlite which characterised the average mantle composition: SiO2 — 45.12; TiO2 — 2.49; Al2O3 — 3.58; Cr2O3 — 0.12; FeO — 9.32; MnO — 0.16; CoO — 0.11; MgO — 23.47; CaO — 13.44; Na2O — 0.20; K2O — 1.12; P2O5 — 0.69; S — 0.18; sum — 100 wt.%. This kimberlite is close to wehrlite in composition.  相似文献   

15.
We report the first data on the contents of main oxides and REE in rocks and the compositions of pyropes and almandines from the Maiskoe kimberlite body recently discovered in the Nakyn field of the Yakutian kimberlite province.The kimberlites are characterized by low contents of Ti, a slight domination of Mg over Ca, and high contents of K2O in some samples. The pyropes have high contents of Cr2O3 (up to 14.5 wt.%); many of them (~16%) are poor in Ca. In petrochemical and mineralogical features the kimberlites of the Maiskoe body are complementary to the highly diamondiferous kimberlites of the nearby Botuobinskaya and Nyurbinskaya pipes. At the same time, they are not the final link in the evolution of kimberlite magmatism in the Nakyn field, which makes the latter still more promising for diamonds.  相似文献   

16.
迟广成  伍月 《岩矿测试》2014,33(3):353-358
晶体矿物学理论认为不同成岩环境金伯利岩中尖晶石族矿物由于形成物理化学条件不同,其晶体结构和化学成分会发生明显的变化,通过对无矿、贫矿、富矿金伯利岩岩管中的尖晶石族矿物晶胞参数和化学成分的测定,研究尖晶石族矿物化学成分和晶胞参数变化与无矿、贫矿、富矿金伯利岩的内在关系,可以提高金伯利岩型金刚石矿床找矿效率。为了确定辽宁瓦房店金伯利岩中的尖晶石族矿物种属,探讨辽宁瓦房店金伯利岩中尖晶石族矿物化学成分和晶胞参数与金伯利岩含矿性关系,本文运用电子探针波谱仪对50件尖晶石族矿物中的MgO、FeO、TiO2、Al2O3、MnO及Cr2O3进行微区化学成分分析,运用单晶X射线衍射仪对136个尖晶石族矿物晶胞参数进行测定。数据统计显示:瓦房店金伯利岩中尖晶石族矿物为铬铁矿和镁铬铁矿,以化学分子式中A、B组主要阳离子占位特征为基础,可把矿区的尖晶石族矿物划分为10个亚种;如果用尖晶石族矿物化学成分中Cr2O3与(Cr2O3+Al2O3)含量的比值Cr'来表示尖晶石族矿物与金伯利岩含矿性的关系,金伯利岩岩体含矿性由富矿→中等含矿→贫矿,相应岩体中尖晶石族矿物Cr'值分别为89.5%、83.4%~87.1%和70.2%,逐渐变低;从无矿金伯利岩岩体→贫矿和中等含矿金伯利岩岩体→富矿金伯利岩岩体,金伯利岩体中第一世代尖晶石族矿物晶胞参数分别为0.831~0.832 nm、0.834~0.836 nm、0.837 nm,有逐渐变大的趋势。本文认为,辽宁瓦房店金伯利岩中第一世代尖晶石族矿物晶胞参数大小和Cr'参数可以作为判断辽宁瓦房店金伯利岩含矿性的指示标型。  相似文献   

17.
The results of a complex study of melt inclusions in olivine phenocrysts contained in unaltered kimberlites from the Udachnaya-East pipe indicate that the inclusions were captured late during the magmatic stage, perhaps, under a pressure of <1 kbar and a temperature of ≤800°C. The inclusions consist of fine crystalline aggregates (carbonates + sulfates + chlorides) + gas ± crystalline phases. Minerals identified among the transparent daughter phases of the inclusions are silicates (tetraferriphlogopite, olivine, humite or clinohumite, diopside, and monticellite), carbonates (calcite, dolomite, siderite, northupite, and Na-Ca carbonates), Na and K chlorides, and alkali sulfates. The ore phases are magnetite, djerfisherite, and monosulfide solid solution. The inclusions are derivatives of the kimberlite melt. The complex silicate-carbonate-salt composition of the secondary melt inclusions in olivine from the kimberlite suggests that the composition of the kimberlite melt near the surface differed from that of the initial melt composition in having higher contents of CaO, FeO, alkalis, and volatiles (CO2, H2O, F, Cl, and S) at lower concentrations of SiO2, MgO, Al2O3, Cr2O3, and TiO2. Hence, when crystallizing, the kimberlite melt evolved toward carbonatite compositions. The last derivatives of the kimberlite melt had an alkaline carbonatite composition.  相似文献   

18.
Eucrites are extraterrestrial plagioclase-pigeonite basalts. Experimental studies suggest that they were produced by partial melting of an olivine (Fo65)-pigeonite (Wo5En65)-plagioclase (An94)-spinel-metal source region. Quantitative modeling of the evolution of REE abundances in the eucrites indicates that the main group of eucrites (e.g. Juvinas) may be produced by approximately 10% equilibrium partial melting of a source region with initial REE abundances which were chondritic relative and absolute. Other eucrites appear to represent greater (e.g. Sioux County—15%) or smaller (e.g. Stannern—4%) degrees of melting. Moore County and Serra de Magé appear to be cumulates of pyroxene and plagioclase produced by fractional crystallization of a Juvinas-like melt. Nuevo Laredo may represent a residual liquid after such fractional crystallization. Our calculations are consistent with the conclusion that the eucrites were derived from a single type of source region. The close correspondence of the age of the eucrites (? 4.6 AE) to the age of the solar system appears to preclude the possibility of extensive chemical differentiation of the eucrite parent body prior to the event which produced the eucritic melts. Thus our calculations have yielded not only the mode of the source region but, assuming homogeneous accretion, the mode and hence the bulk composition of the eucrite parent body as well. We are unable to estimate quantitatively the ratio of metal to olivine in the parent body. If no metal is present, the bulk composition (in oxide wt%) is Na2O—0.04, MgO—29.7, Al2O3—1.8, SiO2—39.0, CaO—1.2, FeO—28.3. If, in contrast, the parent body contained 30% metal, the bulk composition of the silicate portion of the eucrite parent body is Na2O—0.06, MgO—28.0, Al2O3—2.6, SiO2—41.3, CaO—1.9, FeO—26.3. Relative abundances of the meteorites suggest that the eucrite parent body is still intact. The solar system object most closely resembling the eucrites is asteroid 4 Vesta. Because Vesta is unique among the asteroids, we have license to conclude that it is the source of the eucrites and its bulk composition is close to the analyses given above.  相似文献   

19.
我国金伯利岩型金刚石矿床的若干地质特征及其找矿标志   总被引:9,自引:0,他引:9  
董振信 《矿床地质》1991,10(3):255-264
金伯利岩型金刚石矿床是世界上重要的金刚石矿床类型:也是我国迄今所发现的唯一的金刚石原生矿床类型。本文阐述了我国金伯利岩分布的构造部位、时代、产状、与暗色岩类的关系、围岩及其蚀变特征、岩管的岩相特征、岩石类型及岩石化学特征,并指出了该类矿床的找矿标志。  相似文献   

20.
研究目的】河南方城大庄是新探明的中型铌-稀土矿床(Nb2O3资源量16245 t;伴生TRE2O3资源量30147 t),矿体主要赋存在碱性正长岩内。【研究方法】本文在野外地质调查基础上,对含矿碱性正长岩与无矿碱性正长岩开展了岩石学、岩相学和地球化学的对比研究。【研究结果】研究结果表明,含矿与无矿碱性正长岩均富碱、富铝,为典型的A型花岗岩,两类岩石的碱金属含量无明显差别,但(Na2O+K2O)/CaO、FeO*/MgO、K2O/MgO等参数明显不同。含矿碱性正长岩高场强元素Nb、Ta、Ce、U、Th、Zr、Y明显富集,Ba、Sr、P、Eu明显亏损;无矿碱性正长岩大离子亲石元素Rb、高场强元素Nb、Ta、Y和Th元素明显富集,而Ba、U、Sr、P、Ti和重稀土元素明显亏损,但亏损程度低于含矿碱性正长岩。【结论】方城大庄含矿碱性正长岩不是无矿碱性正长岩热液蚀变(钠长石化)的结果,二者应是同一岩浆体系不同演化阶段溶体固结的产物,含矿碱性正长岩的分异演化程度明显高于无矿化的碱性正长岩。方城大庄稀有稀土元素的富集与岩浆高演化、分异过程密切相关。这一研究可为区域找矿勘查提供一定的地质依据。创新点:岩石学和地球化学对比研究显示大庄Nb-REE矿中含矿碱性正长岩具有比无矿岩体更高的演化程度,表明成矿元素的富集与岩浆高分异演化密切相关,为找矿勘查提供了一定的岩石学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号