首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

2.
Laihuite reported in the present paper is a new iron silicate mineral found in China with the following characteristics:
  1. This mineral occurs in a metamorphic iron deposit, associated with fayalite, hypersthene, quartz, magnetitc, etc.
  2. The mineral is opaque, black in colour, thickly tabular in shape with luster metallic to sub-metallic, two perfect cleavages and specific gravity of 3.92.
  3. Its main chemical components are Fe and Si with Fe3+>Fe2+. The analysis gave the formula of Fe Fe 1.00 3+ ·Fe 0.58 2+ ·Mg 0.03 2+ ·Si0.96O4.
  4. Its DTA curve shows an exothermic peak at 713°C.
  5. The mineral has its own infrared spectrum distinctive from that of other minerals.
  6. This mineral is of orthorhombic system; space group:C 2h /5 ?P21/c; unit cell:α=5.813ű0.005,b=4.812ű0.005,c=10.211ű0.005,β=90.87°.
  7. The Mössbauer spectrum of this mineral is given, too.
  相似文献   

3.
U/Pb isotopic data for two zircon suites are presented:
  1. a pre D 1 tonalite gneiss gives an age of 443 ± 16 13 m.y.
  2. a post D 1 leucogranite gneiss gives 427 ± 11 10 m.y.
Both zircon suites contain a minor inherited pre-Cambrian component. The data confirm a lower Palaeozoic age for the major, fabric-forming D 1 event. Hercynian metamorphism which was sufficient to reset muscovite K/Ar ages to ca. 290 m.y. had little effect on the zircons. The possible importance of lower Palaeozoic orogeny in southern Europe and the uncertainties in regional palaeogeography are emphasised.  相似文献   

4.
A unifying theory of kinetic rate laws, based on order parameter theory, is presented. The time evolution of the average order parameter is described by $$\langle Q\rangle \propto \smallint P(x)e^{^{^{^{^{^{^{ - xt} } } } } } } dx = L(P)$$ where t is the time, x is the effective inverse susceptibility, and L indicates the Laplace transformation. The probability function P(x) can be determined from experimental data by inverse Laplace transformation. Five models are presented:
  1. Polynomial distributions of P(x) lead to Taylor expansions of 〈Q〉 as $$\langle Q\rangle = \frac{{\rho _1 }}{t} + \frac{{\rho _2 }}{{t^2 }} + ...$$
  2. Gaussian distributions (e.g. due to defects) lead to a rate law $$\langle Q\rangle = e^{ - x_0 t} e^{^{^{^{^{\frac{1}{2}\Gamma t^2 } } } } } erfc\left( {\sqrt {\frac{\Gamma }{2}} t} \right)$$ where x 0 is the most probable inverse time constant, Γ is the Gaussian line width and erfc is the complement error integral.
  3. Maxwell distributions of P are equivalent to the rate law 〈Q〉∝e?kt .
  4. Pseudo spin glasses possess a logarithmic rate law 〈Q〉∝lnt.
  5. Power laws with P(x)=x a lead to a rate law: ln〈Q〉=-(α + 1) ln t.
The power spectra of Q are shown for Gaussian distributions and pseudo spin glasses. The mechanism of kinetic gradient coupling between two order parameters is evaluated.  相似文献   

5.
The system MgO-Al2O3-SiO2(MAS) comprises 88–90% of the bulk composition of an average peridotite. The MAS ternary is thus a suitable starting point for exploring peridotite phase relations in multicomponent natural systems. The basic MAS phase relations may be treated in terms of the reactions (see list of symbols etc).
  1. py (in Gt)=en (in Opx)+mats (in Opx),
  2. en (in Opx)+sp (in Sp)=mats (in Opx)+fo (in Ol), and
  3. py (in Gt)+fo (in Ol)=en (in Opx)+sp (in Sp).
Extensive reversed phase equilibria data on these three reactions by Danckwerth and Newton (1978), Perkins et al. (1981), and Gasparik and Newton (1984) employing identical experimental methods in the same laboratory have been used by us to deduce the following internally consistent thermodynamic data applying the technique of linear programming:ΔH 298(1) 0 = 2536 J, ΔS 298(1) 0 =? 6.064 J/K;ΔH 298(2) 0 = 29435 J, ΔS 298(2) 0 = 8.323 J/K; andΔH 298(3) 0 =?26899 J, ΔS 298(3) 0 =?14.388 J/K.These data are also found to be consistent with results of calorimetry. Figure 2 shows the calculated phase relations based on our thermodynamic data; they are consistent with the phase equilibria experiments. Successful extension of the MAS phase relations to multicomponent peridotites pivots on the extent to which the effects of the “non-ternary” (i.e. other than MAS) components can be quantitatively handled. Particularly hazardous in this context is Cr2O3, although it barely makes up 0.2 to 0.5 wt% of such rocks. This is because Cr+3 fractionates extremely strongly into Sp. This study focuses on the peridotite phase relations in the MgO-Al2O3-SiO2-Cr2O3 (MASCr) quaternary. Thermodynamic calculations of the MASCr phase relations have been accomplished by using ΔH 298 0 and ΔS 298 0 values for the reactions (1) through (3) indicated above, in conjunction with data on thermodynamic mixing properties of
  1. binary Sp (sp-pc) crystalline solution (Oka et al. 1984),
  2. ternary Opx (en-mats-mcts) crystalline solution (this study), and
  3. binary Gt (py-kn) crystalline solution (this study).
The results are shown in P-T projections (Figs. 3a and b) and isobaric-isothermal sections of MASCr in a projection through the component fo onto the SiO2-Al2O3-Cr2O3 ternary (Figs. 4a and b). The most important results of this work may be summarized as follows:
  1. With increasing incorporation of Cr+3 into Sp and Gt, the X mats isopleths of the reactions (1) and (2) are shifted to higher temperatures (Fig. 3a); simultaneously, the spinel-peridotite to garnet-peridotite phase transition is moved to higher pressures (Fig. 3b).
  2. At identical P and T, the X mats values of Opx coexisting in equilibrium with Ol and Sp is strongly dependent upon the X pc value in the latter phase (Figs. 4a and b). Accurate correction for the composition of Sp is, therefore, a necessary precondition for geothermometry of the spinelperidotites.
  3. The discrepant temperatures reported by Sachtleben und Seck (1981, Fig. 5) from the spinel-peridotites of the Eifel area (systematically too high temperatures as a function of X pc in Sp) are demonstrated to be the result of ignoring the nonideality in the chromian spinels.
  相似文献   

6.
The equilibrium curve for the reaction 3 dolomite + 1 K-feldspar + 1 H2O=1 phlogopite + 3 calcite + 3 CO2 was determined experimentally at a total gas pressure of 2000 bars using two different methods.
  1. In the first case water alone was added to the reactants. The CO2 component of the gas phase was producted solely by the reaction under favourable P-T conditions. This manner of carrying out the reaction is called the “water method”. With this method sufficient time must be allowed for the gas phase to attain a constant composition (see Fig. 1). Reverse reactions were carried out using reaction products of the forward reaction.
  2. In the second case silver oxalate + water were added to the reactants. Breakdown of the silver oxalate leads to formation of a CO2-H2O gasphase of definite composition. At constant temperature and gas pressure the \(X_{{\text{CO}}_{\text{2}} } \) determines whether the reaction products will be phlogopite + calcite or dolomite + K-feldspar. In this case it is not necessary to wait for equilibrium to be attained. This method is abbreviated the “oxalate method”. Reactants for reverse reactions are not identical with the products of the forward reaction.
At high temperatures the results of the two different methods agree well (see Tables 1 and 2). Equilibrium was attained in one case at 490° C and \(X_{{\text{CO}}_{\text{2}} } \) of approximately 0.77, and in the other case at 520° C and \(X_{{\text{CO}}_{\text{2}} } \) of 0.90. At lower temperatures there are considerable differences in the results. With the water method an \(X_{{\text{CO}}_{\text{2}} } \) of about 0.25 was reached at 450° C. With the oxalate method dolomite K-feldspar and water still react with each other at even higher \(X_{{\text{CO}}_{\text{2}} } \) values. Phlogopite, calcite and CO2 are formed together with metastable talc. There are no criteria to indicate which of the methods is the correct one at lower temperatures and in Fig. 2, therefore, both equilibrium curves are plotted.  相似文献   

7.
Stoichiometric mixtures of tremolite and dolomite were heated to 50° C above equilibrium temperatures to form forsterite and calcite. The pressure of the CO2-H2O fluid was 5 Kb and \(X_{{\text{CO}}_{\text{2}} }\) varied from 0.1 to 0.6. The extent of the conversion was determined by the amount of CO2 produced. The resulting mixtures of unreacted tremolite and dolomite and of newly-formed forsterite and calcite were examined with a scanning electron microscope. All tremolite and dolomite grains showed obvious signs of dissolution. At fluid compositions with \(X_{{\text{CO}}_{\text{2}} }\) less than about 0.4, the forsterite and calcite crystals are randomly distributed throughout the charges, indicating that surfaces of the reactants are not a controlling factor with respect to the sites of nucleation of the products. A change is observed when \(X_{{\text{CO}}_{\text{2}} }\) is greater than about 0.4; the forsterite and calcite crystals now nucleate and grow at the surface of the dolomite grains, thus indicating a change in mechanism at medium CO2 concentrations. As the reaction progresses, the dolomite grains become more and more surrounded by forsterite and calcite, finally forming armoured relics of dolomite. Under experimental conditions this characteristic texture can only be formed if the CO2-concentration is greater than about 40 mole %. These findings make it possible to estimate the CO2-concentration from the texture of the dolomite+tremolite+forsterite+calcite assemblage. The results suggest a dissolution-precipitation mechanism for the reaction investigated. In a simplified form it consists of the following 4 steps:
  1. Dissolution of the reactants tremolite and dolomite.
  2. Diffusion of the dissolved constituents in the fluid.
  3. Heterogeneous nucleation of the product minerals.
  4. Growth of forsterite and calcite from the fluid.
Two possible explanations are discussed for the development of the amoured texture at \(X_{{\text{CO}}_{\text{2}} }\) above 0.4. The first is based upon the assumption that dolomite has a lower rate of dissolution than tremolite at high \(X_{{\text{CO}}_{\text{2}} }\) values resulting in preferential calcite and forsterite nucleation and growth on the dolomite surface. An alternative explanation is the formation of a raised CO2 concentration around the dolomite grains at high \(X_{{\text{CO}}_{\text{2}} }\) values, leading to product precipitation on the dolomite crystals.  相似文献   

8.
High-temperature plagioclases NaAlSi3O8(Ab)-CaAl2Si2O8(An) have been prepared by dry devitrification of glasses. X-ray powder photographs were taken to follow the time-temperature dependence of indicators of structural state and to determine the lattice parameters of the plagioclases as well as their K-exchanged equivalents. Transmission electron microscopy (TEM) has been used to study the anorthite-type antiphase domain textures. The results are as follows:
  1. TEM and X-ray powder data suggest to subdivide the high-temperature plagioclase series into three structural regions: (a) An0 to An30–40: monalbite/analbite to high albite-type structures, (b) An60–70 to An100: anorthite-type structures, (c) An30–40 to An60–70: transitional structures assumed to represent the early stages in the development of the structural complexities found in chemically intermediate low temperature plagioclases.
  2. b-Antiphase domains typical for the anorthite-type structure could be imaged in samples ranging between An100 and An67.5, whereas c-antiphase domains have only been found in An90 and An100. The b-domains developed during isothermal crystallization, rather than cooling. The transition from the anorthite-type structure (S.G.I \(\bar 1\) ) to an intermediate C \(\bar 1\) -type structure at An60–70 appears to be a gradual one.
  3. The relative contribution of various structural and chemical influences on the cell edges and angles is discussed in detail. It is shown that the nonlinear variation of γ with An content is due to incomplete Al,Si disorder in the high series.
  相似文献   

9.
A number of experimental CO2 solubility data for silicate and aluminosilicate melts at a variety of P- T conditions are consistent with solution of CO2 in the melt by polymer condensation reactions such as SiO 4(m 4? +CO2(v)+Si n O 3n+1(m) (2n+1) ?Si n+1O 3n+4(m) (2n+4)? +CO 3(m )2? . For various metalsilicate systems the relative solubility of CO2 should depend markedly on the relative Gibbs free change of reaction. Experimental solubility data for the systems Li2O-SiO2, Na2O-SiO2, K2O-SiO2, CaO-SiO2, MgO-SiO2 and other aluminosilicate melts are in complete accord with predictions based on Gibbs Free energies of model polycondesation reactions. A rigorous thermodynamic treatment of published P- T-wt.% CO2 solubility data for a number of mineral and natural melts suggests that for the reaction CO2(m) ? CO2(v)
  1. CO2-melt mixing may be considered ideal (i.e., { \(a_{{\text{CO}}_{\text{2}} }^m = X_{{\text{CO}}_{\text{2}} }^m \) );
  2. \(\bar V_{{\text{CO}}_{\text{2}} }^m \) , the partial molal volume of CO2 in the melt, is approximately equal to 30 cm3 mole?1 and independent of P and T;
  3. Δ C p 0 is approximately equal to zero in the T range 1,400° to 1,650 °C and
  4. enthalpies and entropies of the dissolution reaction depend on the ratio of network modifiers to network builders in the melt. Analytic expressions which relate the CO2 content of a melt to P, T, and \(f_{{\text{CO}}_{\text{2}} } \) for andesite, tholeiite and olivine melilite melts of the form
$$\ln X_{{\text{CO}}_{\text{2}} }^m = \ln f_{{\text{CO}}_{\text{2}} } - \frac{A}{T} - B - \frac{C}{T}(P - 1)$$ have been determined. Regression parameters are (A, B, C): andesite (3.419, 11.164, 0.408), tholeiite (14.040, 5.440,0.393), melilite (9.226, 7.860, 0.352). The solubility equations are believed to be accurate in the range 3<P<30 kbar and 1,100°<T<1,650 °C. A series of CO2 isopleth diagrams for a wide range of T and P are drawn for andesitic, tholeiitic and alkalic melts.  相似文献   

10.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

11.
The equilibrium conditions of the following reaction 2 zoisite +1 CO2?3 anorthite+1 calcite+1 H2O 2 Ca2Al3[O/OH/SiO4/Si2O7]+1 CO2?3 CaAl2Si2O8+1 CaCO3+1 H2O have been determined experimentally at total pressures of P j= 2000 bars, P f =5000 bars, and P f =7000 bars. Owing to the vertical position of the equilibrium curves in isobaric T- \(X_{{\text{CO}}_{\text{2}} }\) diagrams, the composition of the binary H2O-CO2 fluid phase coexisting with zoisite is independent of temperature in the temperature interval investigated. According to our experiments, orthorhombic zoisite is only stable in equilibrium with a fluid phase at a concentration of CO2 which is less than, respectively, ca. 2 Mol% CO2 at P f =2000 bars, ea. 6 Mol% at P f =5000 bars, and ca. 10 Mol% at P f =7000 bars. Thus, the fluid phase coexisting with zoisite is rich in H2O. While this is independent of temperature the experimental data demonstrate that the influence of pressure cannot be neglected: With increasing pressure the concentration of CO2 of the fluid phase coexisting with zoisite can rise a little. The position of the reaction studied, which is independent of temperature and exhibits small values of \(X_{{\text{CO}}_{\text{2}} }\) ,leads to two important petrogenetic conclusions:
  1. The occurrence of zoisite is an indicator for a CO2-poor and H2O-rich fluid composition during metamorphism of marly calcsilicates.
  2. If the concentration of CO2 of the fluid phase coexisting with zoisite exceeds the equilibrium value of \(X_{{\text{CO}}_{\text{2}} }\) calcite+anorthite+H2O is formed from zoisite+CO2. Thus, a considerable increase in the anorthite-content of plagioelase is possible.
  相似文献   

12.
In the present phase of the volcanic activity on Nea Kameni / Santorini / Greece the calc-alkalic volcanic rocks are decomposed by H2O, CO2 and SO2 gases of about 100 °C. Using a method ofGresens (1967) for the determination of gains and losses of compounds five different processes could be distinguished:
  1. leaching of compounds
  2. enrichment of Ca as gypsum
  3. increase of Fe2O3 (6%–11%), TiO2 (0,8%–3%) and Zr
  4. enrichment of Al2O3 (15%–29%), TiO2 (0,8%–1,5%) and K
  5. increase of Al2O3 (15%–26%), Fe2O3 (6%–9%), TiO2 (0,8%–1,3%), Sr, Ba, Pb and Zr
Finally a model for the process of decomposition of calc-alkalic volcanic rocks by sulfuric acid was developed.  相似文献   

13.
The influence of bacteria on recent sediments was first discussed in 1885, whenFischer andGazert were discussing the cycle of substances in the sea as well as in sediments. The influence of bacteria on the cycling of C, N, S, P in recent sediments and the open sea was soon accepted by marine geologists. Nevertheless, only very few experiments have, so far, shown more than qualitative and quantitative data collection in various restricted areas. This is due to the extensive and complicated chain of reactions on the surface of sediments and in the sediment itself. Biologists are asking for the amount of organic and inorganic matter which is reworked and released to the sea. Geologists usually emphasize the amount of substances which are sedimentated. For biologists the sediment is only part of their dominant ecosystem (the sea). While, for geologists the “sea” is only furnishing and influencing their first range system sediment. How much then, are bacteria involved in the slow process of conversion from a recent sediment to sedimentary rocks? Bacteria influence more or less strongly and to a more or less advanced degree of diagenesis:
  1. The organic matter in sediments and the final form in which it is found.
  2. The anions CO3 2?, NO3 ?, OH-, SO4 2?, PO4 3? as well as their intermediate stages and the resulting minerals.
  3. The cations H+, NH4 +, Ca2+, Fe2+, Fe3+, and a series of metals which are dissolved or precipitated by microbial activities as for example Fe, Mn, Cu, Ag, V, Co, Mo, Ni, U, Se, Zn.
  4. The equilibrium of silicium. At least diatoms and radiolarians are precipitating silica, while other reactions which have been proved are not yet shown to influence marine sediments.
  5. pH-values and oxidation-reduction potentials of the sediment.
  6. The composition of interstitial waters.
  7. The surface activity of minerals, since bacteria are growing especially on particle surfaces.
  8. The energy content and temperature of sediments.
  9. The texture of fine grained sediments.
  10. The fossilization of microfauna, macrofauna and trace fossils.
Sedimentology and mineralogy may also influence the bacterial activities and the composition of the microflora within sediments. Methods and problems of sediment microbiology are demonstrated by some investigations in the German Bay (North Sea) in connection with the first German Underwater Station (UWL). Ecological work proves to be difficult in various directions. The main cause of difficulties in microbiological work on sediments are the great variety of different factors influencing the environment (microbial, chemical, physical, mineralogical), the difficulty of taking representative samples, and the small amount of data which has been collected so far.  相似文献   

14.
Massive sulfide deposits located on Hercynian islets of northwestern Morocco exhibit four main characteristics:
  • They are strata-bound massive pyrrhotite deposits mined for sulfur and/or base metals occasionally occurring as sulfides of workable grade.
  • Volcanic rocks with which these massive sulfide orebodies are associated are scarce, although always present as acid flows of submarine emissions of either rhyolitic or more often quartz-keratophyric nature. Later on, basic plutonics intruded the pelitic country rocks.
  • Stockworks underlying the massive sulfide orebodies are common, but not systematic. When present, they occur in siltite ± phyllite ± carbonate rocks at the wall of massive sulfide lenses. They consist of fissural disseminations transformed by epimetamorphic recrystallization and by one schistosity generally concordant with s0.
  • Associated alterites and exhalites belong to three types, i.e., sericitite (or biotite-rich rock), chloritite, and/or chert (jasper).
  • Generally well located in a back-arc basin environment characterized by a two-phase geological history, i.e., “extension and volcanism, compression and metamorphism”, these volcano-sedimentary deposits exhibit distal features with regard to the volcanism coeval with their sedimentation. They are mostly linked with strongly reducing environmental properties entailing pyrrhotite and/or magnetite syngenetic deposition, whatever the iron activity.  相似文献   

    15.
    Synthetic olivines, with composition Fa50, Fa75 and Fa100, have been transformed into spinel in a laser-heated diamond-cell at pressures from 70 to 200 kbar and at a luminance temperature of about 1,200° C. The electrical conductivity σ was measured, at room temperature and up to 200 kbar, on olivine (Lacam 1982; 1983) and spinel (present study). The data obtained permit the following conclusions:
    1. Sample nature effect: under the same conditions (composition, pressure), the σ of spinel is more than three orders of magnitude of the σ of olivine.
    2. Composition effect: there are more than three orders of magnitude between the values of σ for spinels derived from initial compositions of Fa50 and Fa100, respectively.
    3. Pressure effect: The P-effect on σ is greater for olivines than for spinels.
    Besides, as in the case of olivine, in spinel the σ obeys an empirical Boltzmann relation: $$\log {\text{ }}\sigma = n \times x + S \times P + const$$ where the first and second term are the composition and pressure contributions, respectively; x the ratio Fa/Fo in mole percent. In spinel, the activation volume, in direct connection with S, was found to be in the order of 0.3 cm3/mol, about one half of that for olivine.  相似文献   

    16.
    Landau theory of the \(P\bar 1 - I\bar 1\) phase transition in Ca-rich plagioclases reveals the sensitivity of the phase transition behaviour to a) Al, Si disorder, b) structural replacement of Ca by Na, and c) inhomogeneities of lattice strains. The following effects are predicted:
    1. A tricritical phase transition exists in fully ordered anorthite. Al, Si disorder and Na, Ca exchange lead to second order phase transitions.
    2. The transition temperatures depend sensitively on the degree of Al, Si disorder and the chemical composition of the Ca-rich plagioclases. Increasing Na-content decreases the transition temperatures.
    3. The thermal evolution of c and d reflections depends on the homogeneity of the crystal and do not necessarily reflect the temperature evolution of the macroscopic lattice strain. A simple quadratic dependence of the X-ray scattering intensity on the order parameter exists only for fully ordered, homogeneous anorthite.
    The role of inhomogeneous Al, Si distributions and lattice relaxations are discussed including possible structural modulations.  相似文献   

    17.
    The P-T path of magma associated with the 1944 Vesuvius eruption has been outlined on the basis of probe mineralogy and the relationships between the crystallising phases. Equilibrium P-T values, obtained from the reactions:
    1. CaMgSi2O6(liq) = CaMgSi2O6(cpx)
    2. NaAlSi3O8 (liq) = NaAlSi3O8 (plag)
    3. CaAl2Si2O8 (plag)=CaAl2SiO6(cpx)+SiO2(liq) have been established for three intracrustal crystallisation stages: I) 8.0 kbar and 1255 °C; II) 4.0 kbar and 1178 °C; III) 0.5 kbar and 1105 °C.
    The H2O content in the magma has been estimated from an experimental calibration of \(a_{^{CaMgSi_2 O_6 } }^{liq}\) as a function of \(X_{H_2 O}^{liq}\) at P tot = 2 kbar. The estimated water contents of the magma for the three stages, I) 0.7%; II) 0.9%; III) 1.1%, are consistent with the pattern of activity of the 1944 Vesuvius eruption and with the relationship between the lavas. The shallow depth of H2O-saturation of the magma, 0.24 kbar at 1100 °C, is consistent with the eruption sequence of lava flows followed by lava fountain activity.  相似文献   

    18.
    The occurrence of talc and tremolite in a temperature gradient was investigated in siliceous calcite-dolomite sediments exposed along a strip in the southeastern part of the Damara Orogen. Five bivariant reactions may lead to the formation of talc and tremolite:
    1. 3 dolomite+4 quartz+1 H2O ? 1 talc+3 calcite+3 CO2
    2. 5 talc+6 calcite+4 quartz ? 1 tremolite+6 CO2+2 H2O
    3. 2 talc+3 calcite ? 1 tremolite+1 dolomite+1 CO2+1 H2O
    4. 5 dolomite+8 quartz+1 H2O ? 1 tremolite+3 calcite+7 CO2
    5. 2 dolomite+1 talc+4 quartz ? 1 tremolite+4 CO2.
    The common paragenesis of four mineral assemblages tc+cc+dol+qtz1 and tre+tc+ cc+qtz with increasing temperature over an extended area show that the reactions must have taken place along the equilibrium curve or when fluid pressure is not constant along the equilibrium plane of reactions (1) or (2). The described occurrence of the five mineral assemblage tre+tc+cc+dol+qtz can be stable only on the isobaric intersection point, or when P f is variable on the univariant intersection curve of the equilibrium planes of all five reactions. The genetic relations of the described parageneses are illustrated with the help of a phase diagram. Minimum P-T conditions which prevailed during metamorphism in this part of the Damara Orogen have been estimated to be about 590° C and 5 kb.  相似文献   

    19.
    The equilibrium position of the reaction $$\begin{gathered} 1.5 KAlSi_3 O_8 + HCl = 0.5 KAl_3 Si_3 O_{10} (OH)_2 \hfill \\ + 3SiO_2 + KCl \hfill \\ \end{gathered} $$ has been located at 1 and 2 kb pressure and temperatures between 600° and 670° C using the Ag-AgCl buffer. These data can be combined with information on the dissociation of KC1, HC1 and H2O to determine species abundances in supercritical aqueous fluids in equilibrium with muscovite — K-feldspar — quartz assemblages. Chloride species become increasingly associated with increasingT, increasing total molality, (m tot or \(m_{Cl_{tot} } \) ), and decreasing \(P_{H_2 O} \) . Master variable diagrams indicate that the pH of the solutions may vary from near neutral to quite acid. Published data on the paragonite-albite-quartz reaction and exchange reactions involving feldspars and micas were included to calculate speciation in mica-feldspar-NaCl-KCl-HCl-H2O fluids at 2kb pressure and temperatures between 300° and 600° C. The data are not accurate enough to distinguish different feldspar structural states. Concentration gradients were calculated for individual species between K-feldspar+quartz, muscovite+quartz and andalusite+quartz assemblages at 500° C, 2 kb. Assuming that the proton diffuses most rapidly and that there are no [H+] gradients, the molality of the solution must vary 30-fold, with feldspar+quartz at the more concentrated side. The data on mica-feldspar-chloride equilibria are used to interpret the spacial distribution of micas, feldspar and quartz in microfolds. This distribution can be accounted for by pressure solution, due to the fact that non-hydrostatic pressure affects congruently dissolving minerals, auch as quartz, differently from minerals which dissolve incongruently, such as micas and feldspars. We postulate, that during folding at constant \(P_{H_2 O} \) ,T and \(m_{Cl - } \) , gradients in KC1 and SiO2 are created by stress differences between hinge and limb of a microfold, such that both migrate to the hinge area where quartz precipitates and muscovite is converted to K-felspar, thus accounting for the observed mineral distribution.  相似文献   

    20.
    Diopside twins mechanically on two planes, (100) and (001), and the associated macroscopic twinning strains are identical (Raleigh and Talbot, 1967). An analysis based on crystal structural arguments predicts that both twin mechanisms involve shearing of the (100) octahedral layers (containing Ca2+, Mg2+ and Fe2+ ions) by a magnitude of c/2. Small adjustments or shuffles occur in the adjacent layers containing the [SiO4]4? tetrahedral chains. While the (100) twins are conventional with shear parallel to the composition plane, this analysis predicts that (001) twins form by a mechanism closely related to kinking. A polycrystalline diopside specimen was compressed 8% at a temperature of 400° C, a pressure of 16 kilobars, and a compressive strain rate of about 10?4/s. Transmission electron microscopy on this specimen has revealed four basic lamellar features:
    1. (100) mechanical twin lamellae;
    2. (100) glide bands containing unit dislocations;
    3. (001) twin lamellae;
    4. (101) lamellar features, not as yet identified.
    The (001) twins often contain remnant (100) lamellae of untwinned host. Twinning dislocations occur in these (100) lamellae and in the (001) twin boundaries with very high densities. Diffraction contrast experiments indicate that the twinning dislocations associated with both twin laws glide on (100) with Burgers vector b=X [001] where X is probably equal to 1/2 on the basis of the structural analysis. Parallels are drawn between mechanical twinning in clinopyroxenes and clinoamphiboles. The exclusive natural occurrence of basal twins in shock-loaded clinopyroxenes and of analogous ( \(\bar 1\) 01) twins in clinoamphiboles is given a simple explanation in terms of the relative difficulty of the “kinking” mechanism as compared to direct glide parallel to the composition plane.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号