首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The seasonal evolution of the H2O snow in the Martian polar caps and the dynamics of water vapor in the Martian atmosphere are studied. It is concluded that the variations of the H2O mass in the polar caps of Mars are determined by the soil thermal regime in the polar regions of the planet. The atmosphere affects water condensation and evaporation in the polar caps mainly by transferring water between the polar caps. The stability of the system implies the presence of a source of water vapor that compensates for the removal of water from the atmosphere due to permanent vapor condensation in the polar residual caps. The evaporation of the water ice that is present in the surface soil layers in the polar regions of the planet is considered as such a source. The annual growth of the water-ice mass in the residual polar caps is estimated. The latitudinal pattern of the seasonal distribution of water vapor in the atmosphere is obtained for the stable regime.Translated from Astronomicheskii Vestnik, Vol. 38, No. 6, 2004, pp. 497–503.Original Russian Text Copyright © 2004 by Aleshin.  相似文献   

2.
An AOST Fourier spectrometer of the Phobos-Soil project is intended for studying Mars and Phobos by means of measurements of IR radiation spectra of the Martian surface and atmosphere, the Phobos surface, and the spectrum of solar radiation passing through the Martian atmosphere on its limb. The main scientific problems to be solved with the spectrometer on Mars are measurements of methane content, search for minor constituents, and study of diurnal variations in the temperature and atmospheric aerosol. The spectrometer will also study the Martian and Phobos surface both remotely and after landing. The spectral range of the instrument is 2.5?C25 ??m, the best spectral resolution (without apodization) is 0.6 cm?1, and the instantaneous field of view is 2.5°. The recording time of one spectrum is equal to 5 s in solar observations and 50 s in observations of Mars and Phobos. The instrument has self-thermal stabilization and two-axis pointing systems, as well as a built-in radiation source for flight calibration. The spectrometer mass is 4 kg, and power consumption is up to 13 W. Scientific problems, measurement modes, and, briefly, engineering implementation of the experiment are discussed in this work.  相似文献   

3.
George Ohring 《Icarus》1975,24(3):388-394
The concept is described of deducing the temperature and constituent profile of a planetary atmosphere from orbiter measurements of the planet's ir limb radiance profile. Expressions are derived for the weighting functions associated with the limb radiance profile for a Goody random band model. Analysis of the weighting functions for the Martian atmosphere indicates that a limb radiance profile in the 15 μm CO2 band can be used to determine the Martian atmospheric temperature profile from 20 to 60 km. Simulation of the Martian limb radiance profile in the rotational water vapor band indicates that Martian water vapor mixing ratios can be inferred from limb radiance observations in a water vapor band.  相似文献   

4.
Temporal variations of the Martian ozone density profile at high latitudes have been calculated for an entire Martian year, taking into account the seasonal and diurnal variations in temperature, water vapor and solar radiation. A new technique facilitates the long-term model calculations, including diurnal variations. The result is in better agreement with MARINER 9 observations of the time and magnitude of the seasonal maximum than is the result of the previous seasonal model calculated for the diurnally averaged temperature, water vapor and solar radiation. The large scatter of the MARINER 9 data may be partly experimental, but the effect of surface condition, including the water vapor variability and the surface chemistry, may explain some of the dispersion of the observed data. The predicted diurnal variation is substantial except near solstices, and the nighttime total column density is generally larger than the daytime value. The magnitude of the day-and-night difference and the shape of the diurnal variation change markedly with season. The opposite temporal variation is predicted for ozone density between the upper and lower regions. The model predicts the production of a ozone layer at 35–50 km, which is consistent with observations at low latitudes by MARS-5. The observed ozone density may be explained, if the atmospheric temperature is as low as ~ 140 K or if the atmosphere is subsaturated. Effects of the simultaneous existence of an aerosol layer, also observed by MARS-5, are briefly discussed.  相似文献   

5.
A large number of spectra measured by the planetary Fourier spectrometer aboard the European Mars Express mission have been studied to identify the average properties of methane in the Martian atmosphere. Using the line at 3018 cm−1, we have studied the seasonal, diurnal, and spatial variations of methane through the analysis of large averages of spectra (more than 1000 measurements). Methane mixing ratio has been obtained simultaneously with water vapour mixing ratio and water ice content, by best fitting (minimising the χ2) the computed averages with synthetic spectra. These spectra were computed for different values of the three parameters (methane and water vapour mixing ratio, and water ice optical depth).The methane mixing ratio shows a slow decrease from northern spring to southern summer with an average value of 14±5 ppbv (part per billion by volume) and it does not show a particular trend with latitude. The methane mixing ratio seems not to be uniform in longitude in the Martian atmosphere, as already reported by Formisano et al. [2004. Detection of methane in the atmosphere of Mars. Science 306, 1758-1761]. Two maxima are present at −40°E and +70°E longitude. In local time, the methane mixing ratio seems to follow the water vapour diurnal cycle. The most important point for future understanding is, however, that there are special orbits in which methane mixing ratio has a very high value.  相似文献   

6.
S.A. Stern  L. Trafton 《Icarus》1984,57(2):231-240
Cosmic abundance, vapor pressure, and molecular weight considerations restrict the likely gas candidates for Pluto's atmosphere to Ne, N2, CO, O2, and Ar, in addition to the already detected CH4. The vapor pressures and cosmic abundances of these gases indicate that all except Ne should be saturated in Pluto's atmosphere. The vapor pressure of Ne is so high that the existence of solid or liquid Ne on Pluto's surface is very unlikely; cosmic abundance arguments imply that Ne cannot attain saturation in Pluto's atmosphere. At both perihelion, N2 should dominate the saturated gases. CO2 should have the next highest mixing ratio, followed by O2 and Ar. CH4 should have the smallest mixing ratio. Because vapor pressures of these gases vary with temperature at diverse rates, the bulk and constituent mixing ratios of Pluto's atmosphere should vary with season. Between perihelion and aphelion, the column abundance of CH4 may change by a factor of 260 while that of N2 changes by only a factor of 52. The potential seasonal variation of Pluto's atmosphere was investigated by considering the behavior of these gases when individually mixed with CH4. The effects of diurnal and latitudinal variation of insolation and eclipses on the atmosphere also were investigated. Seasonal effects are shown to dominate. It was shown that the atmospheric bulk may not be a minimum near aphelion but rather at intermediate distances from the Sun during summer/winter inadequate ice deposits may allow the atmosphere to collapse by freezing out over winter latitudes. If the atmosphere does not collapse, its weight is sufficient to keep it distributed uniformly around Pluto's surface. In this case, the atmosphere tends to regulate the surface temperature to a seasonally dependent value which is uniform over the globe.Finally, the likely global circulation regimes for each model atmosphere as a function of temperature were investigated and it was concluded that if CH4, O2, or CO dominates the atmosphere, Pluto will exhibit cyclic variations between an axially symmetric circulation system at perihelion and a baroclinic wave regime at aphelion. However, if N2 dominates, as is likely, the wave regime should hold continuously. If the atmosphere collapses to a thin halo during summer/winter seasons, only a weak, symmetric circulation should occur.  相似文献   

7.
In the history of Mars exploration its atmosphere and planetary climatology aroused particular interest. In the study of the minor gases abundance in the Martian atmosphere, water vapour became especially important, both because it is the most variable trace gas, and because it is involved in several processes characterizing the planetary atmosphere. The water vapour photolysis regulates the Martian atmosphere photochemistry, and so it is strictly related to carbon monoxide. The CO study is very important for the so-called “atmosphere stability problem”, solved by the theoretical modelling involving photochemical reactions in which the H2O and the CO gases are main characters.The Planetary Fourier Spectrometer (PFS) on board the ESA Mars Express (MEX) mission can probe the Mars atmosphere in the infrared spectral range between 200 and 2000 cm?1 (5–50 μm) with the Long Wavelength Channel (LWC) and between 1700 and 8000 cm?1 (1.2–5.8 μm) with the Short Wavelength Channel (SWC). Although there are several H2O and CO absorption bands in the spectral range covered by PFS, we used the 3845 cm?1 (2.6 μm) and the 4235 cm?1 (2.36 μm) bands for the analysis of water vapour and carbon monoxide, respectively, because these ranges are less affected by instrumental problems than the other ones. The gaseous concentrations are retrieved by using an algorithm developed for this purpose.The PFS/SW dataset used in this work covers more than two and a half Martian years from Ls=62° of MY 27 (orbit 634) to Ls=203° of MY 29 (orbit 6537). We measured a mean column density of water vapour of about 9.6 pr. μm and a mean mixing ratio of carbon monoxide of about 990 ppm, but with strong seasonal variations at high latitudes. The seasonal water vapour map reproduces very well the known seasonal water cycle. In the northern summer, water vapour and CO show a good anticorrelation most of the time. This behaviour is due to the carbon dioxide and water sublimation from the north polar ice cap, which dilutes non-condensable species including carbon monoxide. An analogous process takes place during the winter polar cap, but in this case the condensation of carbon dioxide and water vapour causes an increase of the concentration of non-condensable species. Finally, the results show the seasonal variation of the carbon monoxide mixing ratio with the surface pressure.  相似文献   

8.
Peter M. Woiceshyn 《Icarus》1974,22(3):325-344
The Mariner 9 S-band radio occultation measurements, which were taken over half a Martian year, were examined for seasonal variations in atmospheric pressures and temperatures. Seasonally related atmospheric pressure oscillations on a global scale were discovered when the pressures were compared on equi-potential levels. There was a global increase in pressure of about 13% between northern winter and spring seasons, and a global decrease in pressure of nearly 14% between northern spring and summer seasons. The maximum global pressure occurred during the northern spring season approximately one Martian month prior to aphelion. These pressure oscillations were correlated with the seasonal growth and decay, and the total area of the polar caps.Temperatures in the mid-latitude regions near the subsolar points were highest during the northern winter season when Mars was closest to the sun. In addition, high latitudinal temperature gradients (up to 2°K per degree latitude) were found. This has important atmospheric dynamical implications, especially for the growth of baroclinic waves.Occultation observations also indicated that the average elevation of the southern hemisphere was nearly 4km higher than the northern hemisphere when referenced to an equipotential level. The occultation measurements showed that the atmospheric pressures near the surface in the southern hemisphere were 33 to 43% lower than the atmospheric pressures near the surface in the northern hemisphere. In addition to other parameters, the asymmetry in the density of the Martian atmosphere and the hemispheric altitude differences are important in understanding the seasonal dynamic processes that exist in the polar cap regions and in the Martian atmosphere generally.  相似文献   

9.
Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water–ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet’s surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the latter leads to better results. The use of a more accurate dust scenario changes the model temperatures, which also strongly affects the water cycle.  相似文献   

10.
Several recent suggestions for stabilizing the Martian atmosphere against photolysis have proved untenable. However, downward convective transport as well as a low altitude (0–35 km) aerosol, which catalyzes two-body molecular recombination reactions, can bring about such stability. The ‘effective’ convection velocity and ‘average’ two-body reaction rate coefficients required by observed abundances are evaluated. The computed profiles of CO and O at high altitude are shown to agree well with observations.  相似文献   

11.
Because of the absence of the atmosphere, the short duration of the Phobos day (7.7 hours), and the presence of a highly porous and fine-grained soil on the Phobos surface, all components of the future Russian Fobos–Grunt lander will operate under frequent and sharp temperature changes: from positive to extremely low negative temperatures. As a consequence, information about the temperature regime directly on the surface of the Martian satellite and in the near-surface layer appears to be extremely important. The proposed publication contains both the information about the thermophysical properties of the surface regolith of Phobos, derived from observations made with the Mariner 9 orbiter, the Viking orbiter, the Fobos-2 spacecraft, and the Mars Global Surveyor orbiter, and the results of the numerical modeling of the thermal regime of the surface regolith layer (on diurnal and seasonal time scales) in the area of the potential Fobos–Grunt landing site. We performed this modeling by taking into account the seasons on Mars and the effects due to the eclipse of Phobos by Mars.  相似文献   

12.
Jupiter’s atmosphere presents limited regions of relatively thin cloud coverage (the so-called ‘hot spots’), which allow thermal radiation by warmer, deeper atmospheric layers to be transmitted directly to space. Hot spots therefore represent a means for probing physical conditions (namely chemical composition) below the main aerosol deck.Forthcoming missions to the Jovian system - Juno and EJSM spacecrafts - will host as payload components spectro-imagers operating in the infrared. Their coverage of 5 μm CH4 transparency windows make them particularly suitable for the investigation of hot spots. This study is an assessment of their retrieval capabilities on the evaluation of gaseous mixing ratios from nighttime observations, on the basis of Bayesian theory.The retrieval performance is evaluated for the JIRAM instrument, a confirmed payload component of Juno. Its data will provide effective constraints on the mixing ratios of water vapor between 40 and 70 km below the reference 1 bar pressure level (between 3.5 and 7 bars). Assuming an a priori correlation length equal to half the scale height, we achieve a minimum retrieval uncertainty of 0.17, once the mixing ratio is given in terms of log10(α), with α being the adimensional mixing ratio (vs. altitude) relative to a given reference profile. The JIRAM-Juno dataset will further allow determination of the ammonia mixing ratio, with a minimum relative retrieval uncertainty of 0.32 in the same altitude range, and of the phosphine mixing ratio, with comparable uncertainty up to the reference altitude.The retrieval performance is evaluated for a second instrument VIRHIS, which is a proposed payload component of Jupiter Ganymede Orbiter (JGO), one of the two spacecrafts of Europa-Jupiter System Mission (EJSM). This instrument has the benefit of higher spectral resolution and extended spectral range, when compared to JIRAM-Juno. Evaluation of the water vapor retrieval shows the uncertainty would be reduced to 0.08 with VIRHIS. The ammonia retrieval range would be expanded up to 10 km (0.66 bar), with a minimum uncertainty value of 0.10.Both instruments will place these measurements in a spatial context due to their simultaneous imaging capabilities, enabling therefore a number of studies covering chemical and dynamical aspects of atmospheric evolution.  相似文献   

13.
T.Y. Kong  M.B. McElroy 《Icarus》1977,32(2):168-189
A variety of models are explored to study the photochemistry of CO2 in the Martian atmosphere with emphasis on reactions involving compounds of carbon, hydrogen, and oxygen. Acceptable models are constrained to account for measured concentrations of CO and O above 90 km, with an additional requirement that they should be in accord with observations of CO, O2, and O3 in the lower atmosphere. Dynamical mixing must be exceedingly rapid at altitudes above 90 km, with effective eddy diffusion coefficients in excess of 107 cm2 sec?1. If recombination of CO2 is to occur mainly by gas phase chemistry, catalyzed by trace quantities of H, OH, and HO2, mixing must be rapid over the altitude interval 30 to 40 km. The value implied for the diffusion coefficient in this region is a function of assumptions made regarding the rates for reaction of OH with HO2 to form H2O and of the rate for reaction of HO2 with itself to form H2O2. If rates for these reactions are taken to have values similar to rates used in current models for the Earth's stratosphere, the eddy diffusion coefficient at 40 km on Mars should be about 5 × 107 cm2 sec?1, consistent with Zurek's (1976) estimate for this parameter inferred from tidal theory. Surface chemistry could have an influence on the abundances of atmospheric CO and O2, but a major effect would imply sluggish mixing at all altitudes below 50 km and in addition would carry implications for the magnitude of the rates for reaction of OH with HO2 and HO2 with itself.  相似文献   

14.
Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile‐free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid‐Ocean‐Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios ~0.4–18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations. Finally, the Noachian Martian interior, as exemplified by surface basalts and NWA 7034, may have had higher volatile contents.  相似文献   

15.
The OMEGA imaging spectrometer onboard the Mars Express spacecraft is particularly well suited to study in detail specific regions of Mars, thanks to its high spatial resolution and its high signal-to-noise ratio. We investigate the behavior of atmospheric water vapor over the four big volcanoes located on the Tharsis plateau (Olympus, Ascraeus, Pavonis and Arsia Mons) using the 2.6 μm band, which is the strongest and most sensitive H2O band in the OMEGA spectral range. Our data sample covers the end of MY26 and the whole MY27, with gaps only in the late northern spring and in northern autumn. The most striking result of our retrievals is the increase of water vapor mixing ratio from the valley to the summit of volcanoes. Corresponding column density is often almost constant, despite a factor of ∼5 decrease in air mass from the bottom to the top. This peculiar water enrichment on the volcanoes is present in 75% of the orbits in our sample. The seasonal distribution of such enrichment hints at a seasonal dependence, with a minimum during the northern summer and a maximum around the northern spring equinox. The enrichment possibly also has a diurnal trend, being the orbits with a high degree of enrichment concentrated in the early morning. However, the season and the solar time of the observations, due to the motion of the spacecraft, are correlated, then the two dependences cannot be clearly disentangled. Several orbits exhibit also spatially localized enrichment structures, usually ring- or crescent-shaped. We retrieve also the height of the saturation level over the volcanoes. The results show a strong minimum around the aphelion season, due to the low temperatures, while it raises quickly before and after this period. The enrichment is possibly generated by the local circulation characteristic of the volcano region, which can transport upslope significant quantities of water vapor. The low altitude of the saturation level during the early summer can then hinder the transport of water during this season. The influence of the coupling between atmosphere and surface, due mainly to the action of the regoliths, can also contribute partially to the observed phenomenon.  相似文献   

16.
Most (~90%) of the estimated original volume of outgassed water on Mars cannot be satisfactorily accounted for by exospheric escape or storage in the atmosphere, as frost, or in the permanent north polar ice cap. The balance may be stored as ground ice in the Martian cryosphere, a zone of permanently frozen ground that is protected from the atmosphere by a debris cover. Ground ice can exist throughout the entire cryosphere, but it need not fill it. If the ground ice does fill the cryosphere, then excess water can exist in a confined aquifer. The theoretical distribution of ground ice can be tested by identification of forms on the Martian surface that may be related to the presence of subsurface ice. The observed features that are most likely to reflect ground ice are thermokarst-like pits and debris flows. Landforms with ambivalent origins include polygonally patterned ground, lobate ejecta blankets, craters with central pits, and curvilinear features. The most persuasive morphologic evidence for ground ice is thermokarst pits and debris flows; the thermokarst pits are primarily located in the volcanic regions of Tharsis and Elysium. The association of ice-related features with these volcanic areas suggests that these forms are not directly latitude dependent. Activation by orbital variations could produce periodic, multiple episodes of melting that are dependent upon latitude. The presence of ice-related features in both hemispheres and the equatorial region of Mars indicates that ground ice may be—or have been—present over the entire planet, as predicted by the cryosphere model.  相似文献   

17.
Helium concentrations in the Martian atmosphere are estimated assuming that the helium production on Mars, comparable to its production on Earth, via the radioactive decay of uranium and thorium, is in steady state equilibrium with its thermal escape. Although non-thermal losses would tend to reduce the estimated concentrations, these concentrations are not necessarily an upper limit since higher production rates and/or a possibly lower effective exospheric temperature over the solar activity cycle could increase them to even higher values. The computed helium concentration at the Martian exobase (200 km) is 8 × 106 atoms cm?3. Through the lower exosphere, the computed helium concentrations are 30–200 times greater than the Mariner-measured atomic hydrogen concentrations. It follows that helium may be the predominant constituent in the Martian lower exosphere and may well control the orbital lifetime of Mars-orbiting spacecraft. The estimated helium mixing ratio is greater at the Martian turbopause than at the terrestrial turbopause, and the helium column density in the lower Martian atmosphere may be comparable to that on Earth.  相似文献   

18.
Recent Viking results indicate the Martian satellites are composed of carbonaceous chondritic material, suggesting that Phobos and Deimos were once asteroids captured by Mars. On the other hand, the low eccentricities and inclinations of their orbits on the equator of Mars argue against that hypothesis. This paper presents detailed calculations of the tidal evolution of Phobos and Deimos, considering dissipation in both Mars and its satellites simultaneously and using a new method applicable for any value of the eccentricity. In particular, including precession of the satellites' orbits indicates that they have always remained close to their Laplacian plane, so that the orbital planes of Phobos and Deimos switched from near the Martian orbital plane to the Martian equator once the perturbations due to the planetary oblateness dominated the solar perturbations, as they do presently. The results show that Deimos has been little affected by tides, but several billion (109) years ago, Phobos was in a highly eccentric orbit lying near the common plane of the solar system. This outcome is obtained for very reasonable values of dissipation inside Mars and inside Phobos. Implications for the origin of the Martian satellites are discussed.  相似文献   

19.
Submillimeter line observations of CO in the Venus middle atmosphere (mesosphere) were observed with the James Clerk Maxwell Telescope (JCMT, Mauna Kea) about the May 2000, February 2002 superior and July 1999, March 2001 inferior conjunctions of Venus. Combined 12CO and 13CO isotope spectral line measurements at 345 and 330 gHz frequencies, respectively, provided enhanced sensitivity and vertical coverage for simultaneous retrievals of atmospheric temperatures and CO mixing ratios over the altitude region 75-105 km with vertical resolution 4-5 km. Supporting millimeter 12CO spectral line observations with the Kitt Peak 12-m telescope (Steward Observatories) provide enhanced temporal coverage and CO mixing sensitivity. Implementation of CO/temperature profile retrievals for the 2000, 2002 dayside (superior conjunction) and 1999, 2001 nightside (inferior conjunction) periods yields a first-time definition of the vertical structure and diurnal variation of a low-to-mid-latitude mesopause within the Venus atmosphere. At the times of these 1999-2002 observations, the Venus mesopause was located at a slightly lower level in the nightside (0.5 mbar, ∼87 km) versus the dayside (0.2 mbar, ∼91 km) atmosphere. Average diurnal variation of Venus mesospheric temperatures appears to be ≤ 5 K at and below the mesopause. Diurnal variation of Venus thermospheric temperatures increases abruptly just above the mesopause, reaching 50 K by the 0.01-mbar pressure level (∼102 km). Atmospheric temperatures above and below the Venus mesopause exhibited global-scale (≥4000 km horizontal) variations of large amplitude (7-15 K) on surprisingly short timescales (daily to monthly) during the 2001 nightside and 2002 dayside observing periods. Venus dayside mesospheric temperatures observed during the 2002 superior conjunction were also 10-15 K warmer than observed during the 2000 superior conjunction. A characteristic timescale for these global temperature variations is not defined, but their magnitude is comparable to previous determinations of secular variability in nightside mesospheric temperatures (Clancy and Muhleman, 1991).  相似文献   

20.
We present the first detections of the ground-state H216O (110-101) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but variability on time scales of less than a week was not detected. The mesospheric water vapor is expected to be in equilibrium with aerosol particles, primarily composed of concentrated sulfuric acid, in the upper haze layers of the Venus atmosphere. If true, moderate amplitude (10-15 K) variability in mesospheric temperature, previously noted in millimeter spectroscopy observations of Venus, can explain the rapid water vapor variability detected by SWAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号