首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Upper Silurian Keyser Limestone is a relatively thin (< 85 m) unit of lagoonal, barrier, and shallow offshore sediments that crops out in the central Appalachians. Lithologies include massive micritic limestones to calcarenites, calcisiltites, and calcareous quartz arenites. The barrier lithofacies is preserved predominantly as tidal inlet channel-fill. Its presence is supported by two lines of evidence: (1) the sequence of sedimentary textures and structures resembles that observed in modern inlets, and (2) the sequence occupies a position immediately above a disconformity, and is accompanied by an abrupt vertical change in faunal diversity, which is interpreted as representing the transgression of open marine over back-barrier environments The inlet channel sequence comprises fine- to medium-grained, well-sorted quartz arenites that disconformably overlie sediments deposited on carbonate tidal flats (laminated, mudcracked pelmicrites). The sandstone displays a fining-upward texture, and contains a broken and abraded mixed fauna. Cross-bedding is bipolar, with major modes oriented obliquely to depositional strike. Decimetre-scale sets of planar and trough cross-beds grade upward to centimetre-scale sets of ripple cross-lamination, washed-out ripples, and plane beds. This sequence represents the change from deep to shallow channel environments, and is attributed to lateral inlet migration. The inlet sequence was preferentially preserved during marine transgression because of its relative thickness and lower stratigraphic position with respect to overlying and adjacent barrier-beach sediments. The vertical relationships of this inlet-lagoon complex emphasize that care must be taken in interpreting shallow-water transgressive sequences. Vertical ‘jumps’ in faunal diversity accompanied by scour surfaces could be misconstrued as major unconformities. Instead, such sequences may represent the shoreface erosion normally associated with the transgressive migration of barrier islands. Whether or not the faunal jump is accompanied by a barrier lithosome is greatly dependent on the geometry, frequency, and migration rate of tidal inlets.  相似文献   

2.
A three-dimensional model for a tidal inlet-barrier island depositional system was constructed through examination of 37 vibracores and 10 auger drill holes on Capers and Dewees Islands, South Carolina. Two cycles of southerly inlet migration and subsequent abandonment resulted in beach ridge truncation on the northern ends of both barriers. Historical evidence indicates that these tidal inlets migrated 1.5 km to the south owing to a dominant north-south longshore transport direction. The hydraulic inefficiency of these over-extended inlet channels caused shorter, more northerly-oriented channels to breach through the ebbtidal deltas. After inlet reorientation, large wave-formed swash bars migrated landward closing former inlet channels. Weakened tidal currents through the abandoned channels permitted clay plugs to form thick impermeable seals over active channel-fill sand and shell. Price and Capers Inlets formed during the onset of the Holocene transgression following submergence of the ancestral Plio-Pleistocene Santee River drainage system. Coarse, poorly sorted inlet-deposited sand disconformably overlies Pleistocene estuarine clay and is capped by a dense clay plug. Shoreline reorientation and landward retreat of a primary barrier island chain occurred between the first and second cycles of inlet-channel migration and abandonment. Beach ridges prograded seaward over the first inlet sequence. A second cycle of inlet migration truncated the northernmost portion of these beach ridges and scoured into the clay plug of the earlier inlet deposit. Abandonment of this channel resulted in deposition of a second abandoned inlet-channel clay plug. Abandoned tidal inlet channels exhibit U-shaped strike and crescentic- to wedge-shaped dip geometries. Basal, poorly sorted inlet sands are sealed beneath impermeable, abandoned-channel silt and clay, washover deposits, and salt marsh. Multiple episodes of inlet migration and abandonment during a rising sea-level deposited stacked inlet-fill sequences within the barrier islands. The resultant stratigraphy consists of interlayered, fining-upward, active inlet-fill sand overlain by thicker abandoned inlet-fill clay plugs. These clay plugs form impermeable zones between adjacent barrier island sand bodies. Shoreline transgression would remove the uppermost barrier island deposits, sealing the inlet-fill sequences between Pleistocene estuarine clay and shoreface to shelf silt and clay.  相似文献   

3.
Tidal inlets, narrow, comparatively deep gaps between barrier islands, are channels through which tidal currents flow vigorously as the water enters and leaves the backbarrier lagoons, bays, and intertidal flats and marshes. Many geologists have compared tidal inlets to river channels and have speculated that if an inlet shifts laterally, it should deposit a distinctive sequence of sediments, analogous to the point-bar sequence left by a meandering stream channel. Fire Island Inlet, located 56 km east of New York City, has migrated WSW at a mean rate of 64 m/year during the period 1825–1940. Waves approaching the coast, predominantly from the southeast, have shifted sediment along the shore toward the WSW. Deposition of sediment on the east side of the inlet has forced the tidal currents to erode the west side of the inlet, thus causing lateral migration. Because hydraulic conditions vary from the channel floor to the subaerial part of the spit which is present on the ENE side of the channel, sedimentary structures and textures vary systematically with depth. We have determined the various sedimentary environments associated with the modern Fire Island Inlet, sampled and described the sediments from these environments, and have collected samples from corings made on that part of Fire Island through which the inlet has migrated. On the basis of our studies, we propose an inlet sequence which is formed by the lateral migration of a tidal inlet. The sequence includes five major units, as follows on p. 492. The sediments belonging to various units in this sequence have been identified in four borings made on those parts of Fire Island through which the Fire Island Inlet has migrated since 1825. This sequence should be applicable to other inlets also. We think that the boundary between deep channel and shallow channel units remains relatively fixed at ?4.5 m, whereas the thickness of the deep channel unit is determined by the depth range between ?4.5 m and the total depth of the inlet. Hence, the main source of variation in the inlet sequence will be the thickness of the deep-channel unit. Most of the sediments of the inlet sequence are incised below mean low water; hence they will almost certainly be preserved in the geologic record, even if all other associated sediments from barrier environments located above mean low water are not preserved. Because of the great variability possible in rates of lateral migration of inlets along the shore compared with the rates of barrier displacement perpendicular to the shore, inlet sediments may be preserved as elongate lenses, or as widespread blankets. The shape of inlet deposits reveals much about the behaviour of barriers during a submergence. Hence, inlet sediments should shed new light on sediments of the continental shelves and on basal transgressive sands in the geologic record.   相似文献   

4.
Barrier islands are important landforms in many coastal systems around the globe. Studies of modern barrier island systems are mostly limited to those of siliciclastic realms, where the islands are recognized as mobile features that form on transgressive coastlines and migrate landward as sea-level rises. Barrier islands of the ‘Great Pearl Bank’ along the United Arab Emirates coast are the best-known carbonate examples. These Holocene islands, however, are interpreted to be anchored by older deposits and immobile. The mid-Holocene to late-Holocene depositional system at Al Ruwais, northern Qatar, provides an example of a mobile carbonate barrier island system, perhaps more similar to siliciclastic equivalents. Sedimentological and petrographic analyses, as well as 14C-dating of shells and biogenic remains from vibracored sediments and surface deposits, show that after 7000 years ago a barrier system with a narrow back-barrier lagoon formed along what is now an exposed coastal zone, while, contemporaneously, a laterally-extensive coral reef was forming immediately offshore. After 1400 years ago the barrier system was forced to step ca 3 km seaward in response to a sea-level fall of less than 2 m, where it re-established itself directly on the mid-Holocene reef. Since that time, the barrier has retreated landward as much as 1000 m to its current position, exposing previously-deposited back-barrier lagoonal sediment at the open-coast shoreline. In modern neritic warm-water carbonate settings mobile barrier island systems are rare. Their construction and migration may be inhibited by reef formation, early cementation, and the relative inefficiency of sourcing beach sediments from open carbonate shelves. Carbonate barrier island systems likely formed more commonly during geological periods when ramps and unrimmed shelves predominated and in calcite seas, when meteoric cementation was minimized as a result of initial calcitic allochem mineralogy. As with their siliciclastic analogues, however, recognition of the influence of these transient landforms in the rock record is challenging.  相似文献   

5.
Three lines of evidence based on data from more than 400 boreholes and vibrocores have been used to reconstruct the evolution of the barrier islands during the Holocene transgression in southern Long Island, New York: (1) the Holocene transgressive stratigraphic sequence behind the present barriers, (2) the stratigraphic patterns of the inner shelf, and (3) the morphology of the now-buried late Pleistocene coastal features. The extensive preservation of backbarrier sediments, radiocarbon dated between 7000 and 8000 yr BP, on the inner shelf of southern Long Island suggests that the barriers have not retreated by continuous shoreface erosion alone, but have also undergone discontinuous retreat by in-place ‘drowning’ of barriers and stepwise retreat of the surf zone. Such stepwise retreat of the surf zone has prevented the backbarrier sediments from being reworked. Based on the presence of submerged barrier sand bodies in seismic records, it is inferred that about 9000 years ago, when the sea stood about 24 m below the present sea level, a chain of barriers developed on the present shelf about 7 km offshore of the present barriers. With continued sea-level rise, the – 24 m barrier built upward until the sea reached about – 15 m MSL, just prior to 7000 yr BP. The barriers were then submerged by the rapidly rising sea, and the surf zone shifted rapidly landward to a position about 2 km from the present shoreline. The surf zone overstepped to the landward margin of the old lagoon, which had become fixed at the steep seaward face of mid-Wisconsinan (?) or Sangamonian coastal barriers. During the past 5000 or 6000 years, the shoreface has retreated continuously by about 2 km. Evidence from southern Long Island and elsewhere in regions of coastal submergence indicates that rapid sea-level rise and low sand supply seem to favour the stepwise retreat of barriers, whereas slow rates of submergence and a greater supply of sand generally favour continuous shoreface retreat. Stationary upbuilding, or seaward progradation of barriers may occur when supply of sand is great, and/or submergence is slowed or reversed. Morphologic highs on the pretransgression surface (such as old barrier ridges) tend to fix the migrating barrier shoreline during either continuous retreat, or stepwise retreat of barriers.  相似文献   

6.
Highly negative δC13 values, ?18 to ? 40%., for carbonate cements found in Recent barrier and beach sands of the Mississippi River Delta complex strongly suggest that considerable carbon is furnished to the CaCO3 cements by either chemical or biological oxidation of CH4. These cemented sands are commonly found on beaches of the Chandeleur barrier island chain and other sites along the Louisiana coast where Holocene sands are rapidly transgressing over highly organic marsh deposits. Generation of CH4 from underlying anoxic marsh sediments, followed by vertical migration and oxidation to CO2 in the porous overlying sand, appears to be the unique set of conditions regulating this process of carbonate cementation.  相似文献   

7.
普拉姆岛(Plum island)是美国东北部缅因湾最大的障壁海岸,岛内向陆一侧为新英格兰地区最大潟湖和沼泽区,它们是晚第四纪末次冰期冰川作用和冰后期海岸作用的沉积响应。通过普拉姆岛研究区上更新统—全新统160个钻孔描述,识别出8种沉积物: 泥炭、冰川黏土、黏土、粉砂、细砂、中粗砂、砾、坠石。根据沉积物类型及其组合特征,结合沉积环境,共划分出8种沉积微相: 障壁沙丘、滨岸沙、水下临滨沙、河道、潮汐水道、潟湖、潮坪、沼泽。研究区在晚第四纪末次冰盛期(MIS2)被劳伦斯蒂德冰盖(Laurentide Ice Sheet)覆盖,发育冰川地貌,冰川泥覆盖在基岩之上,形成底层沉积; 冰后期(MIS1),冰盖消融,海平面发生变化,在冰川地貌鼓丘附近形成沙坝,最终沉积演化为障壁岛—潟湖环境,潟湖通过潮汐水道与广海相连通。  相似文献   

8.
Large, well-developed flood tidal deltas on a barrier island coastline generally indicate a wave-dominated, microtidal sedimentary regime. Vibracores in a lagoon behind the barrier island Shackleford Banks, North Carolina contain an upward fining sequence of coarse-medium, very shelly sand, medium-fine laminated sand, fine-very fine cross-laminated sand and marsh mud. This sequence is interpreted as being a flood tidal delta deposit based on analogy with modern flood tidal delta sediments and represents lagoonal deposition in response to a migrating or closing inlet. The sand facies defined in lagoonal vibracores is found to be continuous beneath a lagoonal marsh and correlative with inlet sections identified in Shackleford Banks drill holes. The correlation of flood tidal delta deposits with inlet sequences in this microtidal environment indicates a close relationship between barrier and backbarrier inlet controlled sedimentation.  相似文献   

9.
Borings from the barrier island/lagoon system of the Eastern Shore of Virginia penetrated an unconformity which separates Pleistocene barrier island and offshore marine sediments from the overlying Holocene tidal delta and barrier island sediments. Offshore marine sediments and deposits within the flood-tidal delta (marsh, tidal flat-bay, inlet-mouth bar complex) are recognized on the basis of sediment color, composition, grain-size changes in the vertical sequence, presence of organic matter, and faunal suite. Subsurface data, historical records, and morphology of lateral accretion on barrier islands suggest that major inlets in the vicinity of Wachapreague have been relatively stable throughout Holocene time; they appear to be located where Pleistocene stream valleys previously existed. Holocene barrier islands apparently developed on drainage divide areas following post-Wisconsin transgression of the sea.

The initial phase of tidal delta development was characterized by vertically accreting, fan-shaped, inlet-mouth bars; tidal channels stabilized after bar crests had shoaled sufficiently for marsh to form. With landward progradation across the lagoon, sand-rich deposits graded laterally away from the inlets and vertically into clayey sand and silty clay of the tidal flat-bay and marsh environments.

Ebb inlet-mouth bars developed asymmetrically southward in response to littoral drift. Flood tidal deltas also built preferentially toward the south as indicated by: (1) sand distribution of the inlet-mouth bar complex; and (2) greater development of marsh south of the inlets.  相似文献   


10.
A 45 km long barrier island exists west of the town of Guerrero Negro, Mexico, along the western coast of the Baja California peninsula, about 720 km south of San Diego, California. This barrier has developed in a mesotidal, arid-climate regime characterized by steady, strong, onshore winds from the NW. The barrier island W of Guerrero Negro has prograded seaward about 1·6 km in the last 1800 years while an aeolian dunefield fed by sand blown from beaches has advanced inland up to 13 km. Landward progradation of the dune system from the barrier has occurred during relative rise in sea-level; thus, aeolian sediments exist at or below the water table over a wide area. The progradation of dunes across marshes, tidal flats, and tidal channels, as well as the repeated submergence of interdune areas by tidal waters, has created a complex suite of mixed aeolian and subaqueous sediments in the back barrier. The complexity of the suites of aeolian sedimentary structures, together with the inclusion of subaqueously formed structures such as current and oscillation ripples, would make recognition of the aeolian origin of much of the sediments difficult in ancient rocks. In addition to the scientific importance of recognizing the aeolian deposits, the sedimentation model represented by the Guerrero Negro barrier has applications in petroleum exploration and development. Currently, most preservational models for barrier islands attach little volumetric importance to aeolian deposits. This modern example suggests that volumetrically significant aeolian deposits can be preserved behind a barrier, particularly in an arid-climate regime. If preserved and charged with oil, the resulting productive sandstone could have an extremely irregular landward edge comprised in part of onshore-prograded aeolian dune sandstone with excellent reservoir characteristics. As with current barrier models, the reservoir would be sealed landward and above by lagoonal mudstone and silt, evaporites, or evaporitic, sandy sabkha deposits. High organic productivity occurs in lagoons immediately adjacent to the dunefields of Guerrero Negro, suggesting that organic-rich source rock may exist near aeolian sandstone in ancient settings similar to Guerrero Negro.  相似文献   

11.
The Ouémé River estuary is located on the seasonally humid tropical coast of Benin, west Africa. A striking feature of this microtidal estuary is the presence of a large sand barrier bounding a 120 km2 circular central basin, Lake Nokoué, that is being infilled by heterogeneous fluvial deposits supplied by a relatively large catchment (50 000 km2). Borehole cores from the lower estuary show basal Pleistocene lowstand alluvial sediments overlain by Holocene transgressive–highstand lagoonal mud and by transgressive to probably early highstand tidal inlet and flood‐tidal delta sand deposited in association with non‐preserved transgressive sand barriers. The change in estuary‐mouth sedimentation from a transgressive barrier‐inlet system to a regressive highstand barrier reflects regional modifications in marine sand supply and in the cross‐barrier tidal flux associated with barrier‐inlet systems. As barrier formation west of the Ouémé River led to an increasingly rectilinear shoreline, the longshore drift cell matured, ensuring voluminous eastward transport of sand from the Volta Delta in Ghana, the major purveyor of sand, to the Ouémé embayment, 200 km east. Concomitantly, the number of tidal inlets, and the tidal flux associated with a hitherto interlinked lagoonal system on this coast, diminished. Complete sealing of Lake Nokoué has produced a large, permanently closed estuary, where tidal intrusion is assured through the interconnected coastal lagoon via an inlet located 60 km east. Since 1885, tides have entered the estuary directly through an artificial outlet cut across the sand barrier. Although precluding the seaward loss of fluvial sediments, permanent estuary‐mouth closure has especially deprived the highstand estuary of marine sand, a potentially important component in estuarine infill on wave‐dominated coasts. In spite of a significant fluvial sediment supply, estuarine infill has been moderate, because of the size of the central basin. Estuarine closure has resulted in two co‐existing highstand sediment suites, with limited admixture, the marine‐derived, estuary‐mouth barrier and upland‐derived back‐barrier sediments. This situation differs from that of mature barrier estuaries characterized by active fluvial‐marine sediment mixing and facies interfingering.  相似文献   

12.
刘家铎 《沉积学报》1992,10(4):137-145
洛亚蒂盆地沉积物是棕黄色软泥和生物碎屑砂。它们有5个来源:新喀里多尼亚堤礁、深海生物群落、浮游生物群体和火山碎屑。沉积物由浊流和半深海沉积物的互层组成,可以通过粒度分析,矿物成分和生物碎屑的分析将两者加以区分。通过对蒂奥和利富之间的岩心的研究,认识到在蒂奥水道对面,分布着一个展布广阔,但幅度很小、延伸50km的海底扇。  相似文献   

13.
The metamorphic allochthon of the central Norwegian Caledonides comprises a complex of discrete nappes of metasediments and igneous rocks ranging in age from probable Svecofennian through Vendian to Silurian. This southeastward-translated allochthon overlies a thin cover of autochthonous Vendian to Cambrian sediments deposited upon a crystalline Precambrian basement, and is superseded by late-orogenic, intermontanebasinal sediments of latest Silurian to Middle Devonian age. Stratigraphical sequences in higher allochthonous units are floored by oceanic tholeiitic basalts with rare, subjacent sheeted-dyke and gabbro units, considered as fragments of an ophiolite assemblage which suffered initial eastward transport in pre-Middle Arenig times, an important orogenic event which is well represented in northern and southwestern Norway. The overlying Ordovician—Silurian sequences, disturbed by episodic parorogenic events, embrace a variety of sedimentary facies from shallow-water carbonates to deep-marine terrigenous turbidites and include both island arc and marginal basin lavas and intrusives. Polyphase Middle Silurian metamorphism and deformation resulted in a complex telescoping and dissection of the Lower Palaeozoic rocks and their Precambrian substrate, with nappe translation in the order of several hundred kilometres. Folding and thrusting of Old Red Sandstone molasse sediments attests to continuing tectonism well into Devonian times.  相似文献   

14.
西秦岭中志留统含铀岩组沉积相初析   总被引:1,自引:0,他引:1  
西奏岭中志留统的层控袖矿床是在沉积作用构成铀源层的基础上,经地下水热液改造富集而成。志留系为被动大陆边缘海的沉积,其南侧为若尔盖古陆。中志留统分为三组,每组的下段均为泻湖相的细碎屑岩,每组的上段均为含炭硅灰泥岩组成的含铀岩组。中志留世时期有大体平行古海岸的水下隆起构成岛链障壁,含铀岩组属于泻湖-礁后潮坪-礁滩相组合。近岸的浅水条件,丰富的陆源细碎屑,局部的还原相带,是形成富铀沉积物的三个基本条件。铀的沉积主要发生在礁滩内缘和礁后潮坪相环境,具中偏低能量、有陆源细碎屑参与、存在生物大量死亡分解而造成的局部还原场,在较缓慢的沉积过程中,海水中的UO_2~(2 )系通过底水与有机质和粘土质等产生充分的渗透扩散和交替吸附而形成。  相似文献   

15.
This study examined grain‐size distributions to address questions regarding geological and oceanographic controls on island morphodynamics along one of the longest undeveloped, mixed‐energy barrier island systems in the world. In particular, statistical analyses (i.e. analysis of variance, Tukey honest significant difference multiple comparison tests, nonparametric statistics and linear regression analysis) of 230 barrier island samples from Ocean City Inlet, Maryland, to the mouth of the Chesapeake Bay and 134 nearshore samples (d ≤ 10 m) identified grain‐size trends related to the morphodynamic characteristics of these systems. In general, the Virginia barrier islands north of Wachapreague Inlet and Assateague Island form a statistically different subset of grain sizes (medium‐grained to coarse‐grained sand) from the islands south of Wachapreague Inlet (fine‐grained sand). These textural trends corroborate the Pleistocene headlands of the Delmarva coastal compartment as the sediment source and indicate that some of the coarse‐grained to medium‐grained sediment bypasses the large sinks in the net southward longshore sediment transport system (i.e. Fishing Point and Chincoteague Inlet). This research also demonstrates that the preferential accumulation of coarse‐grained to medium‐grained sand on the ebb‐tidal delta at Wachapreague Inlet probably controls the erosional morphodynamics of the islands located downdrift (south) of the inlet. These results suggest that an increase in tidal prism, set up by sea‐level rise and/or a shift in wave climate/refraction patterns, may lead to barrier island fragmentation and a runaway transgression of this predominantly natural barrier island system. Consequently, a grain analysis of major coastal compartments, across multiple driving forces, can be used to assess coastal morphodynamics and the potential impact of climate change on coastal systems.  相似文献   

16.
The Famennian-Tournaisian conglomerates and sandstones of the Ksiaz Formation are interpreted as marine resedimented deposits. Matrix- and clast-supported conglomerate beds are equally common, and two textural sequences (motifs) have been recognized: (I) matrix-rich conglomerate → pebbly sandstone → sandstone, and (II) clast-supported conglomerate → sandstone. Variation in clast type partly controls motif type, and therefore, to some extent, matrix percentage in the conglomerates generally. Grading is extremely common in both clast- and matrix-supported conglomerates: inverse (19%), inverse-to-normal (14%) and normal (26%). The studied succession, itself part of a 4 km thick, fan delta, basin-fill sequence, is organized into large (110–150 m) and small-scale (5–30 m) sequences, both of which show (1) upward coarsening and thickening, (2) upward trend of sandstones and pebbly sandstone → matrix-rich conglomerates → clast-supported conglomerates and (3) a less clear upward tendency of massive and normally graded beds → inversely graded beds. Variation in matrix percentage in beds is therefore also partly controlled by fan processes, during the progradation of fan bodies and lobes. It is predicted that individual resedimented conglomerate beds or motifs show general downfan trends in thickness, texture and structure opposite to those evident in the vertical sequences.  相似文献   

17.
The later Telychian (late Llandovery, Silurian) sea-level highstand was a suitable setting for global carbonate deposition and reef growth in epeiric seas. However, evidence from the northwest margin of Yangtze Platform indicates that small carbonate platforms developed in rapidly-subsiding small basins and were principally controlled by muddy clastic input. In particular, sediments of the Ningqiang Formation, late Telychian, usually more than 2000 m thick, are mostly shales, but eight major units of discontinuous (15 km maximum width) and relatively thin (120 m maximum thickness) reef-bearing carbonates, which developed when the sedimentation rate apparently lessened, occur within a relatively short time interval. This interval is between upper griestonensis to spiralis-grandis graptolite biozones, estimated as a c. 2 Ma duration. More than 30 small- to medium-scale patch reefs occur in several parts of the sequence, but only within the carbonate units. Shelly faunas common throughout the sequence reveal water depth to have been shallow during deposition of the Ningqiang Formation equivalent to BA2–3, which has a depth range from low intertidal to the base of the photic zone. BA3 is interpreted as being no more than 60 m deep (Boucot, 1975), which is above normal wave base, frequently affected by storms (Chen et al., 1996), and is regarded as optimum depth for high diversity of Silurian faunas (Boucot, 1975; Brett, 1991). Thus, the rate of sediment accumulation kept pace with basement subsidence, and was a substantial factor for limiting reef growth. Sharp contacts between carbonate units and shales indicate that carbonate units are constrained by frequent inputs of terrigenous debris, as the major cause for termination of carbonate deposition. Therefore, carbonate platforms, and reefs they contained, formed during times when sediment input to the basin lessened and ended when it increased; present evidence does not allow correlation to modeled dry episodes, and we interpret the control to be principally tectonic. Overall, sedimentation in the region was terminated by the end of Telychian time by tectonic uplift of the Yangtze Platform; the southwestward migration of palaeocoastline shows this progression. Sedimentation ceased until Middle Devonian time. Ludlow marine transgression has been recognized in the offshore area of Ningjiang Bay.  相似文献   

18.
现代荆江江心洲沉积   总被引:5,自引:1,他引:4  
张昌民 《沉积学报》1992,10(4):146-153
江心洲与边滩和心滩的主要差别在于其表面植被发育和长期稳定。河道规模的水力强度决定了由上游江心洲向下游江心洲沉积物粒度的不断细化,砂坝规模的局部水流条件决定了江心洲表面上由粒度和岩石相类型所指示的微相具有分带性。江心洲上部层序主要是溢岸水流沉积的结果,但其厚度和分布范围却受江心洲大小的限制,与正常溢岸沉积具有不同的指相意义。江心洲的沉积过程形成(1)正常向下游加积(NDA),(2)汇流区向下游加积(DAC),(3)反向双侧积(CABB)和(4)向上加积(UA)等四个三维建筑结构主要素,由此构成了江心洲砂体的三维建筑结构。  相似文献   

19.
汪寿松  陈昌明  Irion  G 《沉积学报》1988,6(2):78-96
本文目的在于说明有限区域内潮坪小环境沉积物的矿物学和地球化学特点及沉积过程的改造作用。沉积物样品取自汪额诺格岛与联邦德国的德国湾南岸之间的障壁潮坪。粒度分析表明,障壁潮坪由大体平行于大陆的泥坪、混合坪到砂坪三个带组成。粘土矿物以伊利石为主,其次为蒙脱石、高岭石和绿泥石,与北海粘土矿物组合一致。粘土矿物组成和重金属Fe、Mn、Cu、Pb、Zn含量在潮坪不同部位相差无几,说明沉积物受到潮汐水流反覆侵蚀和再沉积作用的混合作用。近潮口附近有机碳含量增高是潮汐水流从北海通过进潮口携入有机物的结果。  相似文献   

20.
Analysis of 75 vibracores from the backbarrier region of Kiawah Island, South Carolina reveals a complex association of three distinct stratigraphic sequences. Beach ridge progradation and orientation-controlled backbarrier development during the evolution of Kiawah Island, and resulted in deposition of: (1) a mud-rich central backbarrier sequence consisting of low marsh overlying fine-grained, tidal flat/lagoonal mud; (2) a sandy beach-ridge swale sequence consisting of high and low marsh overlying tidal creek channel and point bar sand, and foreshore/shoreface; and (3) a regressive sequence of sandy, mixed, and muddy tidal flats capped by salt marsh that occurs on the updrift end of the island. Central backbarrier deposits formed as a result of the development of the initial beach ridge on Kiawah Island. Formation of this beach ridge created a backbarrier lagoon in which fine-grained estuarine and tidal flat mud accumulated. Washovers, oyster mounds, and tidal creek deposits form isolated sand and/or shell-rich lenses in the lagoon. Spartina alterniflora low marsh prograded into the lagoon as the tidal flats aggraded. Barrier progradation and sediment bar-bypassing at Stono Inlet created digitate beach ridges on the northeast end of Kiawah Island. Within the beach-ridge swales, tidal flats were disconformably deposited on shoreface and foreshore sand of the older beach ridges. Tidal creek drainage systems evolved to drain the swales. These rapidly migrating creeks reworked the tidal flat, foreshore, and shoreface sediments while redepositing a fining-upward sequence of channel lag and point bar deposits, which served as a substrate for salt marsh colonization. This resultant regressive sedimentary package marks the culmination of barrier island development and estuary infilling. Given enough time and sedimentation, the backbarrier sequence will ultimately prograde over the barrier island, reworking dune, beach, and foreshore sediments to form the upper sand-rich bounding surface of the barrier lithosome. Preservation of the regressive sequence is dependent upon sediment supply and the relative rate of sea-level rise, but the reworking of barrier islands by tidal inlets and migrating tidal creeks greatly alter and complicate the stratigraphic sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号