首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

3.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

4.
The relativistic Sunyaev–Zel'dovich (SZ) effect offers a method, independent of X-ray, for measuring the temperature of the intracluster medium (ICM) in the hottest systems. Here, using N -body/hydrodynamic simulations of three galaxy clusters, we compare the two quantities for a non-radiative ICM, and for one that is subject both to radiative cooling and to strong energy feedback from galaxies. Our study has yielded two interesting results. First, in all cases, the SZ temperature is hotter than the X-ray temperature and is within 10 per cent of the virial temperature of the cluster. Secondly, the mean SZ temperature is less affected by cooling and feedback than the X-ray temperature. Both these results can be explained by the SZ temperature being less sensitive to the distribution of cool gas associated with cluster substructure. A comparison of the SZ and X-ray temperatures (measured for a sample of hot clusters) would therefore yield interesting constraints on the thermodynamic structure of the intracluster gas.  相似文献   

5.
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.  相似文献   

6.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

7.
In clusters of galaxies, the reaction of the intracluster medium (ICM) to the motion of the co-existing galaxies in the cluster triggers the formation of unique features, which trace their position and motion. Galactic wakes, for example, are an apparent result of the ICM/galaxy interactions, and they constitute an important tool for deciphering the motion of the cluster galaxies.
In this paper we investigate whether Bondi–Hoyle accretion can create galactic wakes by focusing the ICM behind moving galaxies. The solution of the equations that describe this physical problem provides us with observable quantities along the wake at any time of its lifetime. We also investigate which are the best environmental conditions for the detectability of such structures in the X-ray images of clusters of galaxies.
We find that significant Bondi–Hoyle wakes can only be formed in low-temperature clusters, and that they are more pronounced behind slow-moving, relatively massive galaxies. The scalelength of these elongated structures is not very large: in the most favourable conditions a Bondi–Hoyle wake in a cluster at the redshift of z =0.05 is 12 arcsec long. However, the X-ray emission of the wake is noticeably strong: the X-ray flux can reach ∼30 times the flux of the surrounding medium. Such features will be easily detectable in the X-ray images of nearby, relatively poor clusters of galaxies by the Chandra and XMM-Newton satellites.  相似文献   

8.
Mapping cosmic microwave background (CMB) polarization is an essential ingredient of current cosmological research. Particularly challenging is the measurement of an extremely weak B-mode polarization that can potentially yield unique insight on inflation. Achieving this objective requires very precise measurements of the secondary polarization components on both large and small angular scales. Scattering of the CMB in galaxy clusters induces several polarization effects whose measurements can probe cluster properties. Perhaps more important are levels of the statistical polarization signals from the population of clusters. Power spectra of five of these polarization components are calculated and compared with the primary polarization spectra. These spectra peak at multipoles  ℓ≥ 3000  , and attain levels that are unlikely to appreciably contaminate the primordial polarization signals.  相似文献   

9.
The dynamical signatures of the interaction between galaxies in clusters and the intracluster medium (ICM) can potentially yield significant information about the structure and dynamical history of clusters. To develop our understanding of this phenomenon we present results from numerical modelling of the galaxy–ICM interaction, as the galaxy moves through the cluster. The simulations have been performed for a broad range of ICM temperatures ( kT cl=1, 4 and 8 keV), representative of poor clusters or groups through to rich clusters.
There are several dynamical features that can be identified in these simulations. For supersonic galaxy motion, a leading bow shock is present, and also a weak gravitationally focused wake or tail behind the galaxy (analogous to Bondi–Hoyle accretion). For galaxies with higher mass replenishment rates and a denser interstellar medium (ISM), the dominant feature is a dense ram-pressure stripped tail. In line with other simulations, we find that the ICM/galaxy–ISM interaction can result in complex time-dependent dynamics, with ram-pressure stripping occurring in an episodic manner.
In order to facilitate this comparison between the observational consequences of dynamical studies and X-ray observations we have calculated synthetic X-ray flux and hardness maps from these simulations. These calculations predict that the ram-pressure stripped tail will usually be the most visible feature, though in nearby galaxies the bow shock preceding the galaxy should also be apparent in deeper X-ray observations. We briefly discuss these results and compare them with X-ray observations of galaxies where there is evidence of such interactions.  相似文献   

10.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   

11.
Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed active galactic nuclei (AGN)-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point towards a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic ray pressure support, but none has built successful models in which cosmic ray heating is significant. Here, we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic rays, which are injected into the intra-cluster medium (ICM) through diffusion or the shredding of the bubbles by Rayleigh–Taylor or Kelvin–Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P c/ P g ≲ 0.1 and ∇ P c≲ 0.1ρ g , is well within observational bounds. Cosmic ray heating is a very attractive alternative to mechanical heating, and may become particularly compelling if Gamma-ray Large Array Space Telescope ( GLAST ) detects the γ-ray signature of cosmic rays in clusters.  相似文献   

12.
We present the observed relation between Δ T SZ, the cosmic microwave background (CMB) temperature decrement due to the Sunyaev–Zeldovich (SZ) effect, and L , the X-ray luminosity of galaxy clusters. We discuss this relation in terms of the cluster properties, and show that the slope of the observed Δ T SZ– L relation is in agreement with both the L – T e relation based on numerical simulations and X-ray emission observations, and the M gas– L relation based on observation. The slope of the Δ T SZ– L relation is also consistent with the M tot– L relation, where M tot is the cluster total mass based on gravitational lensing observations. This agreement may be taken to imply a constant gas mass fraction within galaxy clusters, however, there are large uncertainties, dominated by observational errors, associated with these relations. Using the Δ T SZ– L relation and the cluster X-ray luminosity function, we evaluate the local cluster contribution to arcmin-scale cosmic microwave background anisotropies. The Compton distortion y -parameter produced by galaxy clusters through the SZ effect is roughly two orders of magnitude lower than the current upper limit based on FIRAS observations.  相似文献   

13.
X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one-third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals was produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early- and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping acts together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50 per cent of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the ICM, being very efficient for clusters in the temperature range  2 < kT (keV) < 10  .  相似文献   

14.
We use high-resolution hydrodynamic resimulations to investigate the properties of the thermal Sunyaev–Zel'dovich (SZ) effect from galaxy clusters. We compare results obtained using different physical models for the intracluster medium (ICM), and show how they modify the SZ emission in terms of cluster profiles and scaling relations. We also produce realistic mock observations to verify whether the results from hydrodynamic simulations can be confirmed. We find that SZ profiles depend marginally on the modelled physical processes, while they exhibit a strong dependence on cluster mass. The central and total SZ emission strongly correlates with the cluster X-ray luminosity and temperature. The logarithmic slopes of these scaling relations differ from the self-similar predictions by less than 0.2; the normalization of the relations is lower for simulations including radiative cooling. The observational test suggests that SZ cluster profiles are unlikely to be able to probe the ICM physics. The total SZ decrement appears to be an observable much more robust than the central intensity, and we suggest using the former to investigate scaling relations.  相似文献   

15.
In recent years, evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here, we calculate the heating rates required to maintain a physically motivated mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds, we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor of the classical Spitzer value is a different function of radius for each cluster. Based on the observations of plasma bubbles, we also calculate the duty cycles for each active galactic nucleus (AGN), in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A, it appears that each of the other AGNs in our sample requires duty cycles of roughly 106–107 yr to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require 'fine-tuning' of the thermal conductivity as a function of radius. As a consequence of this work, we present the AGN duty cycle as a cooling flow diagnostic.  相似文献   

16.
We present an analysis of the X-ray point source populations in 182 Chandra images of galaxy clusters at   z > 0.1  with exposure time >10 ks, as well as 44 non-cluster fields. The analysis of the number and flux of these sources, using a detailed pipeline to predict the distribution of non-cluster sources in each field, reveals an excess of X-ray point sources associated with the galaxy clusters. A sample of 148 galaxy clusters at  0.1 < z < 0.9  , with no other nearby clusters, shows an excess of 230 cluster sources in total, an average of ∼1.5 sources per cluster. The lack of optical data for these clusters limits the physical interpretation of this result, as we cannot calculate the fraction of cluster galaxies hosting X-ray sources. However, the fluxes of the excess sources indicate that over half of them are very likely to be active galactic nuclei (AGN), and the radial distribution shows that they are quite evenly distributed over the central 1 Mpc of the cluster, with almost no sources found beyond this radius. We also use this pipeline to successfully reproduce the results of previous studies, particularly the higher density of sources in the central 0.5 Mpc of a few cluster fields, but show that these conclusions are not generally valid for this larger sample of clusters. We conclude that some of these differences may be due to the sample properties, such as the size and redshift of the clusters studied, or a lack of publications for cluster fields with no excess sources. This paper also presents the basic X-ray properties of the galaxy clusters, and in subsequent papers in this series the dependence of the AGN population on these cluster properties will be evaluated.
In addition the properties of over 9500 X-ray point sources in the fields of galaxy clusters are tabulated in a separate catalogue available online or at http://www.sc.eso.org~rgilmour .  相似文献   

17.
We use recent X-ray observations of the intracluster medium(ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties.We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM,than by shocks or turbulentheating.Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow;in order to adequately heat the inner part of the ICM,they would overheat the outer regions by a large factor,leading to its ejection from the group.Heating by mixing,which was found to be much more efficient than turbulent-heating and shocks-heating,hence,rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.  相似文献   

18.
19.
20.
There is growing evidence that the active galactic nuclei (AGN) associated with the central elliptical galaxy in clusters of galaxies are playing an important role in the evolution of the intracluster medium (ICM) and clusters themselves. We use high-resolution three-dimensional simulations to study the interaction of the cavities created by AGN outflows (bubbles) with the ambient ICM. The gravitational potential of the cluster is modelled using the observed temperature and density profiles of the Virgo cluster. We demonstrate the importance of the hydrodynamical Kutta–Zhukovsky forces associated with the vortex ring structure of the bubbles, and discuss possible effects of diffusive processes on their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号