首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEE-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts, held at Toulouse, France, 26–29 November, 1979.  相似文献   

2.
The research program in gamma-ray burst astronomy at the NASA/Marshall Space Flight Center is described. Large-area scintillation detector arrays have been flown on high-altitude balloons, and an array is being developed for the Gamma-Ray Observatory. The design of these detectors is described along with results obtained from previous balloon flights.Paper presented at the International Gamma-Ray Burst Symposium, Toulouse, France, 26–28 November, 1979.  相似文献   

3.
TeV gamma-ray astronomy   总被引:1,自引:0,他引:1  
  相似文献   

4.
The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re- view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.  相似文献   

5.
Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime.With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.  相似文献   

6.
7.
Significance testing, parameter estimation and sensitivity calculations for -ray telescopes are discussed for single on-off astronomical observations. Four widely used significance test methods are examined by Monte-Carlo simulations. The Maximum Likelihood Ratio Method is found to consistently over-estimate the significance of an observation by a few percents whereas the Fisher's Exact Test is shown to be slightly conservative and always under-estimates the significance by about the same amount when the reported significance is about 3 and therefore it is preferred for -ray astronomy applications. Two methods for constructing a confidence interval and an upper limit for -ray source counts are discussed. It is found that the method based on the Smooth Transformation provides slightly better estimations. A new formula for the calculation of the sensitivity of a -ray telescope is presented, in contrast to the widely accepted one, and their statistical meanings are explained in detail.  相似文献   

8.
Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron–positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo–Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1–10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1–30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are:
  • Diffuse emission, i.e. interactions of cosmic rays with matter, and matter–antimatter annihilation; it is found, “...that a matter–antimatter symmetric universe is empirically excluded....”
  • Nuclear lines, i.e. solar gamma rays, or lines from radioactive decay (nucleosynthesis), like the 1.809 MeV line of radioactive 26Al;
  • Localized sources, i.e. pulsars, active galactic nuclei, gamma ray burst sources (compact relativistic sources), and unidentified sources.
  •   相似文献   

    9.
    Cosmic gamma-ray burst spectroscopy   总被引:1,自引:0,他引:1  
    A review is given of the gamma-ray burst energy spectrum measurements on Venera 11 and Venera 12 space probes. The gamma burst continuum approximates in shape thermal brems-strahlung emission of a hot plasma. The radiation temperature varies over a broad range, 50–1000 keV, for different events. Spectra of many bursts contain cyclotron absorption and/or redshifted annihilation lines. Strong variability is typically observed in both continuum and line spectra. These spectral data provide convincing evidence for the gamma-ray bursts being generated by neutron stars with superstrong magnetic fields 1012–1013 G.  相似文献   

    10.
    Considerable progress has been made in the last half-decade in the field of very high energy (VHE) gamma-ray astronomy (photons with energies between 1011 and 1013 eV). The high background level due to the isotropic cosmic ray flux which has bedevilled the field since its inception in the early 1960's can now be reduced to such a degree that significant gamma-ray signals from several sources become visible within a few hours of observation. The instrumentation and methodologies which have made this possible are reviewed. A brief historical introduction is followed by a summary of the salient properties of the atmospheric Cherenkov flash associated with VHE gamma-ray events. The major components of a VHE gamma-ray astronomy telescope are then reviewed. This is followed by a discussion of the different methodologies currently being used to discriminate against the cosmic ray background. Properties of several specific installations are then summarized, and possible future developments in VHE instrumentation are briefly discussed.  相似文献   

    11.
    The Goddard program of gamma-ray burst studies is briefly reviewed. The past results, present status and future expectations are outlined regarding our endeavors using experiments on balloons, IMP-6 and IMP-7, OGO-3, ISEE-1 and ISEE-3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma-ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma-ray transient, detected on 5 March, 1979.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November, 1979.  相似文献   

    12.
    13.
    It is argued that the hierarchical cosmological paradigm is a viable, and insufficiently appreciated, alternative to the Big Bang paradigm. Recent observational discoveries justify renewed interest in hierarchical models of the Universe.  相似文献   

    14.
    A review of recent theoretical work on gamma-ray bursts is given. The emphasis is put on the localization of sources. It is concluded that sources of gamma-ray bursts must be either old Population I or Population II objects with a mechanism implying that the sources are not too far from the galactic plane. According to this conclusion the more relevant models are probably flare stars or accretion on old neutron stars, radiation of the gravitational energy of the accretion, or thermonuclear explosions.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts, held at Toulouse, France, 26–29 November, 1979.  相似文献   

    15.
    We calculate the GeV afterglow emission expected from a few mechanisms related to gamma-ray bursts (GRBs) and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift /X-Ray Telescope, Gamma-ray Large Area Space Telescope (GLAST)/Large Area Telescope (LAT) should detect the self-Compton emission from the forward shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.  相似文献   

    16.
    We report on preliminary results of EXOSAT observations of three gamma-ray burst error boxes. No source was detected down to a limit of 10–10 erg cm–2s–1, assuming a black-body spectrum for the burst counterpart. Results are interpreted in the framework of current theoretical models.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

    17.
    18.
    Details are presented of an atmospheric Cherenkov telescope for use in very high energy gamma-ray astronomy which consists of a cluster of 109 close-packed photomultiplier tubes at the focus of a 10 meter optical reflector. The images of the Cherenkov flashes generated both by gamma-ray and charged cosmic-ray events are digitized and recorded. Subsequent off-line analysis of the images improves the significance of the signal to noise ratio by a factor of 10 compared with non-imaging techniques.  相似文献   

    19.
    The recent detection of a transient absorption feature in the X-ray prompt emission of GRB 990705 showed the importance of such observations in the understanding of gamma-ray bursts and their progenitors. We investigate the time dependence of photoionization edges during the prompt emission of bursts in different environments. We show that their variability can be used to infer the density and geometry of the surrounding medium, giving important clues to unveil the nature of the burst progenitor.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号