首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu‐Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh‐pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark‐luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white‐luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542–693 °C and 1.8–2.1 GPa. In contrast, the UHP metamorphic domains are grey‐luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739–866 °C and >5.5 GPa. The outermost retrograde rims have dark‐luminescent CL images, and contain low‐P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP‐MS trace‐element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U‐Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823–503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254–239 Ma, the UHP growth domains occurred at 238–230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218–206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55–60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165–175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid‐crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P–T conditions are 9–10 km Myr?1 and 6.4 km Myr?1, respectively, and these rapid subduction–exhumation rates may explain the obtained P–T–t path. Such a fast exhumation suggests that Sulu‐Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth.  相似文献   

2.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

3.
The development of shear zones at mid‐crustal levels in the Proterozoic Willyama Supergroup was synchronous with widespread fluid flow resulting in albitization and calcsilicate alteration. Monazite dating of shear zone fabrics reveal that they formed at 1582 ± 22 Ma, at the end of the Olarian D3 deformational event and immediately prior to the emplacement of regional S‐type granites. Two stages of fluid flow are identified in the area: first an albitizing event which involved the addition of Na and loss of Si, K and Fe; and a second phase of calcsilicate alteration with additions of Ca, Fe, Mg and Si and removal of Na. Fluid fluxes calculated for albitization and calcsilicate alteration were 5.56 × 109 to 1.02 × 1010 mol m?2 and 2.57 × 108–5.20 × 109 mol m?2 respectively. These fluxes are consistent with estimates for fluid flow through mid‐crustal shear zones in other terranes. The fluids associated with shearing and alteration are calculated to have δ18O and δD values ranging between +8 and +11‰, and ?33 and ?42‰, respectively, and ?Nd values between ?2.24 and ?8.11. Our results indicate that fluids were derived from metamorphic dehydration of the Willyama Supergroup metasediments. Fluid generation occurred during prograde metamorphism of deeper crustal rocks at or near peak pressure conditions. Shear zones acted as conduits for major crustal fluid flow to shallow levels where peak metamorphic conditions had been attained earlier leading to the apparent ‘retrograde’ fluid‐flow event. Thus, the peak metamorphism conditions at upper and lower crustal levels were achieved at differing times, prior to regional granite formation, during the same orogenic cycle leading to the formation of retrograde mineral assemblages during shearing.  相似文献   

4.
T. Reinecke 《Lithos》1998,42(3-4):147-189
Pelagic metasediments and MORB-type metabasalts of the former Tethyan oceanic crust at Cignana, Valtournanche, Italy, experienced UHP metamorphism and subsequent exhumation during the Early to Late Tertiary. Maximum PT conditions attained during UHP metamorphism were 600–630 °C, 2.7–2.9 GPa, which resulted in the formation of coesite-glaucophane-eclogites in the basaltic layer and of garnet-dolomite-aragonite-lawsonite-coesite-phengite-bearing calc-schists and garnet-phengite-coesite-schists with variable amounts of epidote, talc, dolomite, Na-pyroxene and Na-amphibole in the overlying metasediments. During subduction the rocks followed a prograde HP/UHP path which in correspondance with the Jurassic age of the Tethyan crust reflects the thermal influence of relatively old and cold lithosphere and of low to moderate shear heating. Inflections on the prograde metamorphic path may correspond to thermal effects that arise from a decrease in shear heating due to brittle-plastic transition in the quartz-aragonite-dominated rocks, induced convection in the asthenospheric mantle wedge and/or heat consumption by endothermic reactions over a restricted PT segment during subduction. After detachment from the downgoing slab some 50–70 Ma before present, the Cignana crustal slice was first exhumed to ca. 60 km and concomitantly cooled to ca. 550 °C, tracing back the UHP/HP prograde path displaced by 50–80 °C to higher temperatures. Exhumation at this stage is likely to have occurred in the Benioff zone, while the subduction of cool lithosphere was going on. Subsequently, the rocks were near-isothermally exhumed to ca. 30 km, followed by concomitant decompression and cooling to surface conditions (at < 500 °C, < 1 GPa). During this last stage the UHPM slice arrived at its present tectonic position with respect to the overlying greenschist-facies Combin zone. In contrast to the well-preserved HP/UHPM record of the coesite-glaucophane eclogites, the HP/UHP assemblages of the metasediments have been largely obliterated during exhumation. Relics from which the metamorphic evolution of the rocks during prograde HP metamorphism and the UHP stage can be retrieved are restricted to rigid low-diffusion minerals like garnet, dolomite, tourmaline and apatite.  相似文献   

5.
Abstract The Siluro-Devonian Waits River Formation of north-east Vermont was deformed, intruded by plutons and regionally metamorphosed during the Devonian Acadian Orogeny. Five metamorphic zones were mapped based on the mineralogy of carbonate rocks. From low to high grade, these are: (1) ankerite-albite, (2) ankerite-oligoclase, (3) biotite, (4) amphibole and (5) diopside zones. Pressure was near 4.5kbar and temperature varied from c. 450° C in the ankerite-albite zone to c. 525° C in the diopside zone. Fluid composition for all metamorphic zones was estimated from mineral equilibria. Average calculated χco2[= CO2/(CO2+ H2O)] of fluid in equilibrium with the marls increases with increasing grade from 0.05 in the ankerite-oligoclase zone, to 0.25 in the biotite zone and to 0.44 in the amphibole zone. In the diopside zone, χCO2 decreases to 0.06. Model prograde metamorphic reactions were derived from measured modes, mineral chemistry, and whole-rock chemistry. Prograde reactions involved decarbonation with an evolved volatile mixture of χCO2 > 0.50. The χCO2 of fluid in equilibrium with rocks from all zones, however, was generally <0.40. This difference attests to the infiltration of a reactive H2O-rich fluid during metamorphism. Metamorphosed carbonate rocks from the formation suggests that both heat flow and pervasive infiltration of a reactive H2O-rich fluid drove mineral reactions during metamorphism. Average time-integrated volume fluxes (cm3 fluid/cm2 rock), calculated from the standard equation for coupled fluid flow and reaction in porous media, are (1) ankerite-oligoclase zone: c. 1 × 104; (2) biotite zone: c. 3 × 104; (3) amphibole zone: c. 10 × 104; and diopside zone: c. 60 × 104. The increase in calculated flux with increasing grade is at least in part the result of internal production of volatiles from prograde reactions in pelitic schists and metacarbonate rocks within the Waits River Formation. The mapped pattern of time-integrated fluxes indicates that the Strafford-Willoughby Arch and the numerous igneous intrusions in the field area focused fluid flow during metamorphism. Many rock specimens in the diopside zone experienced extreme alkali depletion and also record low χCO2. Metamorphic fluids in equilibrium with diopside zone rocks may therefore represent a mixture of acid, H2O-rich fluids given off by the crystallizing magmas, and CO2-H2O fluids produced by devolatilization reactions in the host marls. Higher fluxes and different fluid compositions recorded near the plutons suggest that pluton-driven hydrothermal cells were local highs in the larger regional metamorphic hydrothermal system.  相似文献   

6.
While extensive studies have demonstrated fluid release during subduction of oceanic crust, little attention has been paid to fluid activity during subduction and exhumation of continental crust. Abundant occurrence of quartz veins within eclogites in the Dabie-Sulu orogenic belt of China provides us with an opportunity to study the origin and role of vein-forming fluids with respect to heat and mass transfer during ultrahigh pressure (UHP) metamorphism and its relevant processes. This study focuses on kyanite-quartz vein that occurs as polycrystalline aggregates within the low-T eclogite in the Dabie terrane, which are interpreted as pseudomorphs after former porphyroblasts of lawsonite. Coesite pseudomorphs were found for the first time in eclogite garnet, resulting in a revised estimate of peak PT conditions at 670°C and 3.3 GPa for the eclogite and thus upgrading the high-P unit to an UHP unit. On the basis of the relationship between calculated PT path and metamorphic reactions as well as the absence of foliation texture, and undulose extinction of quartzes in the vein, we conclude that lawsonite breakdown into kyanite–quartz–zoisite assemblage took place at the onset of exhumation subsequent to peak pressure. Retrograde metamorphism caused O and H isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in stable isotope compositions. Zircon U–Pb dating and whole-rock Nd–Sr isotope analyses indicate that eclogite protolith is the paleoceanic basalt that was derived from the depleted mantle by magmatism at about 1.8 to 1.9 Ga but experienced hydrothermal alteration by surface waters. The altered basalt underwent UHP metamorphism in the Triassic that caused fluid release for zircon growth/overgrowth not only at about 242±3 Ma prior to the onset of peak pressure but also at about 222±4 Ma during decompression dehydration by lawsonite breakdown and hydroxyl exsolution in the low-T/UHP eclogite. Consistent ages of 236.1±4.2 Ma and 230±7 Ma were obtained from mineral Sm–Nd and Rb–Sr isochron dating, respectively, indicating attainment and preservation of Nd and Sr isotope equilibria during the Triassic UHP eclogite-facies metamorphism. Ar–Ar dating on paragonite from the eclogite gave consistent plateau and isochron ages of 241.3±3.1 Ma and 245.5±9.8 Ma, respectively, which are interpreted to date paragonite crystallization during the prograde eclogite-facies metamorphism. The timing of peak UHP metamorphism for the low-T eclogite is constrained at sometime prior to 236.1±4.2 Ma. Thus the termination age of peak UHP metamorphism may be different in different slices of deep-subducted slab.  相似文献   

7.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   

8.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

9.
Prograde mineral assemblages and compositions have been predicted for pelitic schist in the 10 component system Na2O–K2O–CaO–MnO–FeO–MgO–Al2O3–SiO2–CO2–H2O for three cases of prograde metamorphism and fluid-rock interaction: (1) increasing temperature (T) at constant pressure (P) and constant pore fluid volume (1%) without infiltration (no-infiltration case); (2) increasing T at constant P accompanied by sufficient fluid infiltration that fluid composition is at all times constant (large-flux case); and (3) increasing T at constantP accompanied by a timeintegrated fluid flux f 104 cm3 cm 2 (intermediate-flux case). Stable mineral assemblages and compositions were calculated by solving a system of non-linear equations that specify mass balance and chemical equilibrium between minerals and fluid. The model pelitic system includes quartz, muscovite, plagioclasc, chlorite, ankerite, siderite, biotite, garnet, staurolite, andalusite, kyanite, sillimanite, K-feldspar, and a coexisting, binary H2O–CO2 fluid. Specifically, prograde thermal metamorphism was modelled for Shaw's (1956) average low-grade pelite and for a moderate range of bulk rock compositions at P=3, 5, and 7 kb and initial fluids with Xco 2 o =0.02–0.40. The model predicts a carbonate-bearing mineral assemblage for average pelite under chlorite zone conditions composed of quartz, muscovite, albite, chlorite, ankerite, and siderite. The mineral assemblages predicted for the noinfiltration case are unlike those typically observed in regional metamorphic terranes. Simulations of metamorphism for the large-flux and intermediate-flux cases, however, reproduce the sequence of mineral assemblages observed in normal Barrovian regional metamorphic terranes. These results suggest that regional metamorphism of pelitic schists is typically associated with infiltration of significant quantities of aqueous fluid.  相似文献   

10.
Effect of metamorphic reactions on thermal evolution in collisional orogens   总被引:1,自引:0,他引:1  
The effects of metamorphic reactions on the thermal structure of a collisional overthrust setting are examined via forward numerical modelling. The 2D model is used to explore feedbacks between the thermal structure and exhumation history of a collisional terrane and the metamorphic reaction progress. The results for average values of crustal and mantle heat production in a model with metapelitic crust composition predict a 25–40 °C decrease in metamorphic peak temperatures due to dehydration reactions; the maximum difference between the P–T–t paths of reacting and non‐reacting rocks is 35–45 °C. The timing of the thermal peak is delayed by 2–4 Myr, whereas pressure at peak temperature conditions is decreased by more than 0.2 GPa. The changes in temperature and pressure caused by reaction may lead to considerable differences in prograde reaction pathways; the consumption of heat during dehydration may produce greenschist facies mineral assemblages in rocks that would have otherwise attained amphibolite facies conditions in the absence of reaction enthalpy. The above effects, although significant, are produced by relatively limited metamorphic reaction which liberates only half of the water available for dehydration over the lifetime of the prograde metamorphism. The limited reaction is due to the lack of heat in a model with the average thermal structure and relatively fast erosion, a common outcome in the numerical modelling of Barrovian metamorphism. This problem is typically resolved by invoking additional heat sources, such as high radiogenic heat production, elevated mantle heating or magmatism. Several models are tested that incorporate additional radiogenic heat sources; the elevated heating rates lead to stronger reaction and correspondingly larger thermal effects of metamorphism. The drop in peak temperatures may exceed 45 °C, the maximum temperature differences between the reacting and non‐reacting P–T–t paths may reach 60 °C, and pressure at peak temperature conditions is decreased by more than 0.2 GPa. Field observations suggest that devolatilization of metacarbonate rocks can also exert controls on metamorphic temperatures. Enthalpies were calculated for the reaction progress recorded by metacarbonate rocks in Vermont, and were used in models that include a layer of mixed metapelite–metacarbonate composition. A model with the average thermal structure and erosion rate of 1 mm year?1 can provide only half of the heat required to drive decarbonation reactions in a 10 km thick mid‐crustal layer containing 50 wt% of metacarbonate rock. Models with elevated heating rates, on the other hand, facilitated intensive devolatilization of the metacarbonate‐bearing layer. The reactions resulted in considerable changes in the model P–T–t paths and ~60 °C drop in metamorphic peak temperatures. Our results suggest that metamorphic reactions can play an important role in the thermal evolution of collisional settings and are likely to noticeably affect metamorphic P–T–t paths, peak metamorphic conditions and crustal geotherms. Decarbonation reactions in metacarbonate rocks may lead to even larger effects than those observed for metapelitic rocks. Endothermic effects of prograde reactions may be especially important in collisional settings containing additional heat sources and thus may pose further challenges for the ‘missing heat’ problem of Barrovian metamorphism.  相似文献   

11.
Eclogites within exhumed continental collision zones indicate regional burial to depths of at least 60 km, and often more than 100 km in the coesite‐stable, ultra‐high pressure (UHP) eclogite facies. Garnet, omphacitic pyroxene, high‐Si mica, kyanite ± coesite should grow at the expense of low‐P minerals in most felsic compositions, if equilibrium obtained at these conditions. The quartzofeldspathic rocks that comprise the bulk of eclogite facies terranes, however, contain mainly amphibolite facies, plagioclase‐bearing assemblages. To what extent these lower‐P minerals persisted metastably during (U)HP metamorphism, or whether they grew afterwards, reflects closely upon crustal parameters such as density, strength and seismic character. The Nordfjord area in western Norway offers a detailed view into a large crustal section that was subducted into the eclogite facies. The degree of transformation in typical pelite, paragneiss, granitic and granodioritic gneiss was assessed by modelling the equilibrium assemblage, comparing it with existing parageneses in these rocks and using U/Th–Pb zircon geochronology from laser ablation ICPMS to establish the history of mineral growth. U–Pb dates define a period of zircon recrystallization and new growth accompanying burial and metamorphism lasting from 430 to 400 Ma. Eclogite facies mafic rock (~2 vol.% of crust) is the most transformed composition and records the ambient peak conditions. Rare garnet‐bearing pelitic rocks (<10 vol.% of crust) preserve a mostly prograde mineral evolution to near‐peak conditions; REE concentrations in zircon indicate that garnet was present after 425 Ma and feldspar broke down after 410 Ma. Felsic gneiss – by far the most abundant rock type – is dominated by quartz + biotite + feldspar, but minor zoisite/epidote, phengitic white mica, garnet and rutile point to a prograde HP overprint. Relict textures indicate that much of the microstructural framework of plagioclase, K‐feldspar, and perhaps biotite, persisted through at least 25 Ma of burial, and ultimately UHP metamorphism. The signature reaction of the eclogite facies in felsic rocks – jadeite/omphacite growth from plagioclase – cannot be deduced from the presence of pyroxene or its breakdown products. We conclude that prograde dehydration in orthogneiss leads to fluid absent conditions, impeding equilibration beyond ~high‐P amphibolite facies.  相似文献   

12.
Inliers of 1.0–1.3 Ga rocks occur throughout Mexico and form the basement of the Oaxaquia microcontinent. In the northern part of the largest inlier in southern Mexico, rocks of the Oaxacan Complex consist of the following structural sequence of units (from bottom to top), which protolith ages are: (1) Huitzo unit: a 1012±12 Ma anorthosite–mangerite–charnockite–granite (AMCG) suite; (2) El Catrı́n unit: ≥1350 Ma orthogneiss migmatized at 1106±6 Ma; and (3) El Marquez unit: ≥1140 Ma para- and orthogneisses. These rocks were affected by two major tectonothermal events that are dated using U–Pb isotopic analyses of zircon: (a) the 1106±6 Ma Olmecan event produced a migmatitic or metamorphic differentiation banding folded by isoclinal folds; and (b) the 1004–978±3 Ma Zapotecan event produced at least two sets of structures: (Z1) recumbent, isoclinal, Class 1C/3 folds with gently NW-plunging fold axes that are parallel to mineral and stretched quartz lineations under granulite facies metamorphism; and (Z2) tight, upright, subhorizontal WNW- to NNE-trending folds accompanied by development of brown hornblende at upper amphibolite facies metamorphic conditions. Cooling through 500 °C at 977±12 Ma is documented by 40Ar/39Ar analyses of hornblende. Fold mechanisms operating in the northern Oaxacan Complex under Zapotecan granulite facies metamorphism include flexural and tangential–longitudinal strain accompanied by intense flattening and stretching parallel to the fold axes. Subsequent Phanerozoic deformation includes thrusting and upright folding under lower-grade metamorphic conditions. The Zapotecan event is widespread throughout Oaxaquia, and took crustal rocks to a depth of 25–30 km by orogenic crustal thickening, and is here designated as Zapotecan Orogeny. Modern analogues for Zapotecan granulite facies metamorphism and deformation occur in middle to lower crustal portion of subduction and collisional orogens. Contemporaneous tectonothermal events took place throughout Oaxaquia, and in various parts of the Genvillian orogen in Laurentia and Amazonia.  相似文献   

13.
胶北地体位于华北克拉通东部陆块胶-辽-吉带南端,主要由闪长质-TTG-花岗质片麻岩、变质表壳岩系和变质镁铁-超镁铁质岩所组成。本文通过对胶北早前寒武纪变质岩系的岩石学、矿物化学、变质反应结构和序列、变质温度和压力估算与同位素年代学资料的综合研究和总结,得出以下重要结论:(1)与华北克拉通东部陆块其它地区太古宙变质基底类似,本区也存在~2500Ma区域性新太古代变质事件,且与本区2550~2500Ma岩浆作用在时间上非常接近,其变质作用发生的时间比岩浆作用要晚10~50Myr,指示本区~2500Ma区域性变质事件可能与大规模的幔源岩浆底侵作用存在密切的成因关系。(2)胶北还存在1950~1850Ma区域性古元古代变质事件,并导致了大量高压基性和泥质麻粒岩的形成,高压基性麻粒岩主要以不规则透镜体、变形岩墙群或岩脉群的形式赋存于闪长质-TTG-花岗质片麻岩之中,并集中分布在安丘-平度-莱西-莱阳-栖霞一带,大致沿北东-南西向断续带状分布,构成了一条长约300km的古元古代高压麻粒岩相变质带。(3)本区古元古代高压麻粒岩以记录近等温减压(ITD)及随后近等压降温(IBC)的顺时针P-T-t轨迹为特征,指示本区变质杂岩在古元古代晚期曾强烈地卷入了与俯冲-拼贴-碰撞造山有关的构造过程,并可能经历了如下复杂的构造演化:(I)在古元古代晚期2000~1950Ma,随着有限大洋地壳的持续俯冲作用,本区各类变质岩的原岩开始经历一次构造增厚事件,并导致了它们的原岩经历了早期绿片岩相-角闪岩相进变质作用;(II)1950~1870Ma,大洋地壳俯冲作用结束,本区开始发生弧-陆拼贴和陆-陆碰撞作用,大陆地壳持续缩短和加厚,在加厚下地壳或岛弧根部带约50km的深度,发生了区域性高压麻粒岩相变质作用,并导致了本区变基性岩和变泥质岩分别形成了石榴石+单斜辉石+斜长石±角闪石±石英±铁-钛氧化物和石榴石+蓝晶石+钾长石+斜长石+黑云母+石英+铁-钛氧化物+熔体的高压麻粒岩相矿物组合。(III)1870~1800Ma,在同碰撞峰期变质结束之后,本区造山作用进入了后碰撞构造折返-伸展演化阶段,先后经历了早期快速构造折返和晚期缓慢冷却降温两个构造热演化阶段。其中,在早期快速构造折返阶段,高压麻粒岩经历了峰后近等温或略微增温减压退变质作用的叠加,高压基性麻粒岩表现为沿石榴石边部形成了含斜方辉石的后成合晶。与此同时,早期快速构造折返阶段还伴随着热松弛和伸展作用,出现一系列的幔源基性岩浆活动,不仅导致了本区大量未经历高压麻粒岩相变质的变基性岩群的形成,同时也诱发了区内大规模的地壳深熔作用的发生。自温度高峰期之后,本区地壳岩石还经历了一个近等压冷却降温过程,并发生了区域性角闪岩相退变质作用,高压基性麻粒岩表现为石榴石和斜方辉石边部常出现含角闪石的退变边或后成合晶。最终,在1800Ma左右,本区含电气石花岗伟晶质岩脉的大量出现,则标志着胶北地体古元古代晚期(2000~1800Ma)俯冲-拼贴-碰撞造山作用的最终结束。  相似文献   

14.
Granulite grade marble layers interlayered with metapelitic granulites from Lützow Holm Bay, East Antarctica, provide insight into fluid–rock interactions during burial to and exhumation from lower crustal levels. Sub-millimeter scale strontium, oxygen and carbon isotope variations along with LA-ICPMS trace element geochemistry and mineral chemistry of texturally characterized carbonates and associated minerals helped to reconstruct the multistage metamorphic fluid history.Fluid–rock interaction dating back to prograde metamorphism are still preserved in consistently low oxygen and high strontium isotope compositions (δ18O = 12‰; 87Sr/86Sr(550Ma) = 0.7248) within a massif dolomitic marble layer that escaped significant later metasomatism. In most marbles, total re-crystallization and isotopic resetting occurred in the presence of “externally derived” hyper-saline fluids that circulated along the carbonate layers during the early stages of prograde metamorphism. This leads to a trend of increased radiogenic Sr in marbles towards the value of associated metapelitic rocks that have 87Sr/86Sr(550Ma) of 0.764.LA-ICPMS studies on trace elements in carbonate and associated silicate minerals at different textural settings, distinguished using cathodoluminescence microscopy, revealed multiple metasomatic events during retrograde metamorphism. Trace element contents of Ba, Sr, Pb and U gave compelling evidence for metasomatic alteration that postdate the exsolution of carbonate at ~ 600 ºC, which can be correlated with the fluids released from the crystallization of anatectic melts and pegmatites. Subsequently, meteoric fluid infiltration occurred at a shallower level of the crust and caused extreme oxygen isotopic heterogeneity (δ18O = 14.7 ~ ? 4.9‰) and imprinted high concentration of fluid mobile elements. Taken together our results emphasize the importance of integrating textural and chemical heterogeneities to reveal the multiple episodes of fluid–rock interaction processes in a dynamic continental crust, which has major implications on migration of fluids and material and help in formulating models on the geodynamic evolution of crust.  相似文献   

15.
The effect of fluid flow on mixed-volatile reactions in metamorphic rocks is described by an expression derived from the standard equation for coupled chemical-reaction and fluid-flow in porous media. If local mineral-fluid equilibrium is assumed, the expression quantitatively relates the time-integrated flux at any point in a flow-system to the progress of devolatilization reactions and the temperature- and pressure-gradients along the direction of flow. Model calculations indicate that rocks are generally devolatilized by fluids flowing uptemperature and/or down-pressure. Flow down-temperature typically results in hydration and carbonation of rocks. Time-integrated fluid fluxes implied by visible amounts of mineral products of devolatilization reactions are on the order of 5·102–5·104 mol/cm2. The model was applied to regionally metamorphosed impure carbonate rocks from south-central Maine, USA, to obtain estimates of fluid flux, flow-direction, and in-situ metamorphic-rock permeability from petrologic data. Calculated time-integrated fluxes are 104–106 cm3/cm2 at 400°–450° C, 3,500 bars. Fluid flowed from regions of low temperature to regions of high temperature at the peak of the metamorphic event. Using Darcy's Law and estimates for the duration of metamorphism and hydrologic head, calculated fluxes are 0.1–20·10-4 m/year and minimum permeabilities are 10-10–10-6 Darcy. The range of inferred permeability is in good agreement with published laboratory measurements of the permeability of metamorphic rocks.  相似文献   

16.
This study considers the potential of using the U-Pb dating of garnet for determining quantitative P-T-t paths for the late Archean metamorphism in the Pikwitonei granulite domain. Garnets for U-Pb dating were selected mainly from samples that also provide information on pressure and temperature. The garnets used for dating were clear and free of any visible inclusions. Pb concentrations range from 63 ppb to 966 ppb and U from 136 ppb to 1143 ppb. The measured 206Pb/204Pb ratios range from 52.8 to 529.4. The ages are generally discordant with U/Pb ages that may lie above or below concordia. The discordance is caused by a recent disturbance of the U/Pb ratio in the garnets as indicated by replicate analyses on the same garnet separates that reproduce 207Pb/206Pb ages well within analytical uncertainty and in most cases within ±1.5 Ma at 2600–2750 Ma. High grade metamorphism continued over a period of at least one hundred million years, but the garnet-K-feldspar Pb-Pb ages suggest that, during this time, garnet growth has been favored during three distinct periods in the Cauchon Lake area: 2700–2687 Ma 2660–2637 Ma 2605–2591 Ma The ca. 2695 Ma garnet ages from Cauchon Lake date the time of melting and staurolite breakdown during prograde metamorphism, the ca. 2640 Ma ages date the time of extensive migmatization and the last period of metamorphic garnet growth, the ca. 2600 Ma ages date the time of crystallization of igneous garnet in late granitic intrusions. Peak metamorphism occurred around 2640 Ma followed by the intrusions of pegmatites starting at 2629 Ma. The Pb-Pb ages for garnet are similar to the U-Pb ages for zircon that date a leucocratic mobilizate (2695 Ma), a plagioclaseamphibole mobilizate (2637 Ma) and pegmatite (2598 Ma) (Heaman et al. 1986 a; Krogh et al. 1986; this study). Xenocrysts of garnet from 2600 Ma old graphic granites give minimum ages of 2984 Ma and 2741 Ma which are minima for the times of garnet growth in the source of the granites. The agreement of the zircon and garnet ages suggests that the metamorphism may have been punctuated by events that led to the development of melts or encouraged mineral growth at specific times. If so, the prograde and retrograde paths of metamorphism in the area may have contained minor excursions in pressure, temperature or fluid fugacities. In the Natawahunan Lake area some 50 km northwest of Cauchon Lake, garnet growth associated with the prograde breakdown of staurolite occurred at ca. 2744–2734 Ma. This suggests that a similar style of metamorphism may have occurred earlier in the Natawahunan Lake area than at Cauchon Lake area, or higher grades of metamorphism were reached earlier and were of longer duration associated with the somewhat greater depths in the Natawahunan Lake area. These results indicate the these garnets, which are 0.1–1 cm in diameter, have maintained closed system behavior for U and Pb at peak metamorphic conditions, i.e. temperatures up to 800° C and pressures of 7.5 kb.  相似文献   

17.
The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high‐temperature, low‐pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850–1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207Pb/206Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860–1855 Ma, prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer‐parallel D1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207Pb/206Pb age of 1845 ± 4 Ma. The S2 fabric is folded around tight folds and cut by ductile shear zones associated with D3 (ca 1830 Ma), and all pre‐existing structures are folded around large‐scale, open F4 folds (ca 1820 Ma). Construction of a temperature‐time path for the mid‐crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400–500°C for 25–30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were relatively cold (~350°C) when intruded by the Fletcher Creek Granite at ca 1850 Ma, but were subsequently heated rapidly to 700–800°C during peak metamorphism at ca 1845 Ma. Repeated injection of mafic magmas caused multiple remelting of the metasedimentary wall rocks, with mappable increases in leucosome volume that show a strong spatial relationship to these intrusives. This mafic igneous activity prolonged the elevated geotherm and ensured that the rocks remained very hot (≥650°C) for at least 10 million years. The Mabel Downs Tonalite was emplaced during amphibolite facies metamorphism, with intrusion commencing at ca 1835 Ma. Its compositional heterogeneity, and the presence of mutual cross‐cutting relations between ductile shear zones and multiple injections of mingled magma suggest that it was emplaced syn‐D3. Broad‐scale folding attributable to F4 was accompanied by widespread intrusion of granitoids, and F4 fold limbs are truncated by large, mostly brittle retrograde S4 shear zones.  相似文献   

18.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

19.
The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ~530–630 °C and ~7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 mm year?1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension.  相似文献   

20.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号