首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

2.
We report on the discovery of three new pulsars in the first blind survey of the north Galactic plane  (45° < l < 135°; | b | < 1°)  with the Giant Meterwave Radio telescope (GMRT) at an intermediate frequency of 610 MHz. The survey covered 106 deg2 with a sensitivity of roughly 1 mJy to long-period pulsars (pulsars with period longer than 1 s). The three new pulsars have periods of 318, 933 and 1056 ms. Their timing parameters and flux densities, obtained in follow-up observations with the Lovell Telescope at Jodrell Bank and the GMRT, are presented. We also report on pulse nulling behaviour in one of the newly discovered pulsars, PSR J2208+5500.  相似文献   

3.
We present a new method for determining physical parameters of RRab variables exclusively from multicolour light curves. Our method is an inverse photometric Baade–Wesselink analysis which, using a non-linear least-squares algorithm, searches for the effective temperature ( T eff) and pulsational velocity ( V p) curves and other physical parameters that best fit the observed light curves, utilizing synthetic colours and bolometric corrections from static atmosphere models. The T eff and V p curves are initially derived from empirical relations then they are varied by the fitting algorithm. The method yields the variations and the absolute values of the radius, the effective temperature, the visual brightness and the luminosity of individual objects. Distance and mass are also determined. The method is tested on nine RRab stars subjected to Baade–Wesselink analyses earlier by several authors. The physical parameters derived by our method using only the light-curve data of these stars are well within their possible ranges defined by direct Baade–Wesselink and other techniques. A new empirical relation between the I C magnitude and the pulsational velocity is also presented, which allows to construct the V p curve of an RRab star purely from photometric observations to an accuracy of about 3.5 km s−1.  相似文献   

4.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

5.
Radiation pressure acts to accelerate dust grains and, by transfer of momentum through collisions with the gas, drives the outflows of late-type stars. Some of these dust–gas collisions may be energetic enough to remove atoms from the dust grains. From an assumed initial size distribution for the dust grains, the method of Krüger et al. is used to study the evolution of a sample of spherical amorphous carbon grains under conditions typical of a late-type star. The size distribution of dust grains is presented for various sets of model parameters. One set of models assumes an initial Mathis, Rumpl & Nordsieck (MRN) distribution for the dust grains. The high-luminosity ( L ∗), high-effective temperature ( T eff) set of parameters has a terminal velocity ( v term) that is near, but above , the upper limit of observed outflow velocities for carbon stars (∼30 km s−1 for the assumed ̇ of 5×10−6 M yr−1). The low L ∗, T eff model has a v term that lies near, but below , the upper limit of observed velocities. A significant amount of sputtering occurs in the high L ∗, T eff model with ∼40 per cent of the grain mass sputtered. About ∼1 per cent of the dust mass is sputtered in the low L ∗, T eff. Another set of models assumes that the dust forms with a log-normal distribution. Here, v term is nearly the same for the high L ∗, T eff model as for the low L ∗, T eff model. This is a result of the large amount of dust mass loss (∼75 per cent) by sputtering in the high L ∗, T eff model.  相似文献   

6.
Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153 MHz to characterize the statistical properties of the background radiation across ∼1° to subarcmin angular scales, and across a frequency band of 5 MHz with 62.5 kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum   C l   . We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency   V 2( U , 0)  . From our observations, we find that   V 2( U , 0)  is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies  κ( U , Δν)  seems to be much more sensitive to calibration errors. We find a rapid decline in  κ( U , Δν)  , in contrast with the prediction of less than 1 per cent variation across 2.5 MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.  相似文献   

7.
Effective temperatures T eff, surface gravities log  g and interstellar extinctions A V are found for 107 B stars. Distances d of the stars, which are based on the derived T eff, log  g and A V values, show good agreement with those obtained from the Hipparcos parallaxes. Comparing the T eff and log  g values with evolutionary computations, we infer masses, radii, luminosities, ages and relative ages of the stars. Empirical relations between the T eff and log  g parameters, on the one hand, and the photometric indices Q , [ c 1] and β , on the other hand, are constructed; these relations give a fast method for the T eff and log  g estimation of early and medium B stars. Inclusion of the infrared J , H and K colours into the T eff, log  g and A V determination shows that (i) the T eff and log  g parameters are altered only slightly; (ii) the A V value is rather sensitive to these colours, so an accuracy better than 0.05 mag in the JHK data is necessary for precise A V evaluation.  相似文献   

8.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

9.
We present observations of the Lockman Hole taken at 610 MHz with the Giant Metrewave Radio Telescope (GMRT). Twelve pointings were observed, covering a total area of ∼5 deg2 with a resolution of  6 × 5 arcsec2  , position angle  +45°  . The majority of the pointings have a rms noise of ∼60 μJy beam−1 before correction for the attenuation of the GMRT primary beam. Techniques used for data reduction and production of a mosaicked image of the region are described, and the final mosaic is presented along with a catalogue of 2845 sources detected above 6σ. Radio source counts are calculated at 610 MHz and combined with existing 1.4-GHz source counts, in order to show that pure luminosity evolution of the local radio luminosity functions for active galactic nuclei and starburst galaxies is sufficient to account for the two source counts simultaneously.  相似文献   

10.
We perform Monte Carlo simulations of synthetic EMSS cluster samples, to quantify the systematic errors and the statistical uncertainties on the estimate of Ω0 derived from fits to the cluster number density evolution and to the X-ray temperature distribution up to z =0.83 . We identify the scatter around the relation between cluster X-ray luminosity and temperature to be a source of systematic error, of the order of ΔsystΩ0=0.09 , if not properly taken into account in the modelling. After correcting for this bias, our best Ω0 is 0.66. The uncertainties on the shape and normalization of the power spectrum of matter fluctuations imply relatively large uncertainties on this estimate of Ω0, of the order of ΔstatΩ0=0.1 at the 1 σ level. On the other hand, the statistical uncertainties due to the finite size of the high-redshift sample are twice as small. Therefore, what is needed in order to improve the accuracy of Ω0 estimates based on cluster number density evolution is a more reliable measure of the local temperature function and a better understanding of the cluster observed properties both in the local Universe and at high redshift, that is the relation between cluster mass, temperature and luminosity. This requires detailed observations of X-ray selected cluster samples, in comparison with hydrodynamic simulations including refined physics.  相似文献   

11.
We present new determinations of bolometric corrections and effective temperature scales as a function of infrared optical colours, using a large data base of photometric observations of about 6500 Population II giants in Galactic globular clusters (GGCs), covering a wide range in metallicity (−2.0 < [Fe/H] < 0.0).   New relations for BC K versus ( V  −  K ) , ( J  −  K ) and BC V versus ( B  −  V ), ( V  −  I ), ( V  −  J ), and new calibrations for T eff, using both an empirical relation and model atmospheres, are provided.   Moreover, an empirical relation to derive the R parameter of the infrared flux method as a function of the stellar temperature is also presented.  相似文献   

12.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

13.
We present CCD photometry in the Washington system C and T 1 passbands down to   T 1∼ 22  in the fields of L35, L45, L49, L50, L62, L63 and L85, seven poorly studied star clusters in the inner region of the Small Magellanic Cloud (SMC). We measured T 1 magnitudes and   C − T 1  colours for a total of 114 826 stars distributed throughout cluster areas of 13.7 × 13.7 arcmin2 each. Cluster radii were estimated from star counts distributed throughout the entire observed fields. The seven clusters are generally characterized by a relatively small angular size and by a high field star contamination. We performed an in-depth analysis of the field star contamination of the colour–magnitude diagrams (CMDs), and statistically cleaned the cluster CMDs. Based on the best fits of isochrones computed by the Padova group to the  ( T 1,  C − T 1)  CMDs, we derive ages for the sample, assuming Z = 0.004, finding ages between 25 Myr and 1.2 Gyr. We then examined different relationships between positions in the SMC, age and metallicity of a larger sample of clusters including our previous work whose ages and metallicities are on the same scale used in this paper. We confirm previous results in the sense that the further a cluster is from the centre of the galaxy, the older and more metal poor it is, with some dispersion; although clusters associated with the Magellanic Bridge clearly do not obey the general trend. The number of clusters within ∼ 2° of the SMC centre appears to have increased substantially after ∼2.5 Gyr ago, hinting at a burst.  相似文献   

14.
We make use of 3456 d of observations of the low-ℓ p-mode oscillations of the Sun in order to study the evolution over time of the measurement precision of the radial eigenfrequencies. These data were collected by the ground-based Birmingham Solar-Oscillations Network (BiSON) between 1991 January and 2000 June. When the power spectrum of the complete time series is fitted, the analysis yields frequency uncertainties that are close to those expected from the returned coherence times of the modes. The slightly elevated levels compared with the prediction appear to be consistent with a degradation of the signal-to-noise ratio in the spectrum that is the result of the influence of the window function of the observations (duty cycle 71 per cent). The fractional frequency precision reaches levels of a several parts in 106 for many of the modes. The corresponding errors reported from observations made by the GOLF instrument on board the ESA/NASA SOHO satellite, when extrapolated to the length of the BiSON data set, are shown to be (on average) about ∼25 per cent smaller than their BiSON counterparts owing to the uninterrupted nature of the data from which they were derived.
An analysis of the BiSON data in contiguous segments of different lengths, T , demonstrates that the frequency uncertainties scale as T −1/2. This is to be expected in the regime where the coherence (life) times of the modes, τ n ℓ, are smaller than the observing time T (the 'oversampled' regime). We show that mode detections are only now beginning to encroach on the 'undersampled' regime (where   T < τ n ℓ)  .  相似文献   

15.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

16.
We present angular diameters for 42 Luminosity Class (LC) I stars and 32 LC II stars that have been interferometrically determined with the Palomar Testbed Interferometer. Derived values of radius and effective temperature are established for these objects, and an empirical calibration of these parameters for supergiants will be presented as a function of spectral type and colours. For the effective temperature versus  ( V − K )0  colour, we find an empirical calibration with a median deviation of  Δ T = 70 K  in the range of  0.7 < ( V − K )0 < 5.1  for LC I stars; for LC II, the median deviation is  Δ T = 120 K  from  0.4 < ( V − K )0 < 4.3  . Effective temperature as a function of spectral type is also calibrated from these data, but shows significantly more scatter than the T EFF versus  ( V − K )0  relationship. No deviation of T EFF versus spectral type is seen for these high-luminosity objects relative to LC II giants. Directly determined diameters range up to  400 R  , though are limited by poor distance determinations, which dominate the error estimates. These temperature and radii measures reflect a direct calibration of these parameters for supergiants from empirical means.  相似文献   

17.
We present NH3(1,1) and (2,2) observations of MBM 12, the closest known molecular cloud (65-pc distance), aimed at finding evidence for on-going star formation processes. No local temperature (with a T rot upper limit of 12 K) or linewidth enhancement is found, which suggests that the area of the cloud that we have mapped (15-arcmin size) is not currently forming stars. Therefore this nearby 'starless' molecular gas region is an ideal laboratory to study the physical conditions preceding new star formation.
A radio continuum source has been found in Very Large Array archive data, close to but outside the NH3 emission. This source is likely to be a background object.  相似文献   

18.
We examine the effects of cooling flows on the T X– L Bol relation for a sample of the most X-ray luminous ( L Bol > 1045 erg s−1) clusters of galaxies known. Using high-quality ASCA X-ray spectra and ROSAT images we explicitly account for the effects of cooling flows on the X-ray properties of the clusters and show that this reduces the previously noted dispersion in the T X– L Bol relationship. More importantly, the slope of the relationship is flattened from L Bol ∝  T 3X to approximately L Bol ∝  T 2X, in agreement with recent theoretical models which include the effects of shocks and pre-heating on the X-ray gas. We find no evidence for evolution in the T X– L Bol relation within z  ∼ 0.3. Our results demonstrate that the effects of cooling flows must be accounted for before cosmological parameters can be determined from X-ray observations of clusters. The results presented here should provide a reliable basis for modelling the T X– L Bol relation at high X-ray luminosities.  相似文献   

19.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

20.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号