首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specimens of fine grained micritic limestone were deformed in plane strain geometry in pure shear, a combination of simple and pure shear, and in simple shear. Temperatures were 400° C and 500° C, confining pressure was 100 MPa. In the experiments with a simple shear component strain is concentrated and approximately homogeneous in a 2–3 mm wide shear zone. Shear displacement is documented by marker lines and circles. Shear strain γ varies between 0.84 and 1.56. Strain is recorded by flattening of individual grains, defining a foliation normal to the axis of principal finite shortening ε 1. No twinning is observed on a macroscopic scale. X-ray and neutron diffraction techniques were used to characterize texture before and after deformation. All specimens display strong preferred orientation as documented by 0006, 10¯14 and 11¯220 pole-figures, c axes pole-figures display three maxima in the ε1–ε3 plane. If the axes of the strain ellipsoids are used as a coordinate system textures in pure and simple shear are similar but there is considerable monoclinic distortion in simple shear which is attributed to the noncoaxial strain path.  相似文献   

2.
The mechanical twinning of calcite is compared with ferroelastic behavior. For calcite a paraelastic prototype phase does not exist, therefore a virtual prototype is defined with cubic m3m symmetry. Using this condition the strain tensors of all domain states of mechanical twinning are calculated. With the use of the strain tensors, application of Sapriel's strain compatibility law gives the crystallographic orientations of all possible twin planes between different domain states. The findings indicate that the twin walls are {1 0 0} and {1 1 0} planes with respect to the morphological rhombohedral lattice. These twin plane orientations from the equated strain tensors are in accordance with the r-and e-twin systems commonly observed in calcite. Received: 17 December 1998 / Revised, accepted: 24 April 1999  相似文献   

3.
Single crystals of hexagonal and monoclinic pyrrhotite, Fe1?xS, have been experimentally deformed by uniaxial compression at 300 MPa confining pressure, and at a strain rate of 1 × 10?5 s?1 in the temperature range from 200° C to 400° C. Very high anisotropy characterizes the mechanical behaviour of the crystal structure. During compression parallel to thec-axis, when no slip system may be activated, the maximum strength is observed. One or two degrees of non-parallelism between [c] and σ1 results in slip on the basal plane, illustrating the very low resistance of the lattice against shear in this plane. At σ1 Λ(0001)=45°, i.e. when maximum resolved shear stress is attained on the basal plane, the strength reaches a minimum. Thecritical resolved shear stress (CRSS) increases from less than 4.7 MPa at 400° C to 52 MPa at 200° C. A new slip system, \((10\overline 1 0)\parallel \left\langle {1\overline 2 10} \right\rangle \) prism slip, is described. It is activated only at high angles (>70°) between σ1 and [c]. The CRSS of the prism slip ranges from 7 MPa (400° C) to 115 MPa (200° C). Twinning on \((10\overline 1 2)[(10\overline 1 2):(1\overline 2 10)]\) , earlier reported by several authors, has been produced only at the highest temperature either as secondary feature during pressure release (compression ‖[c]) or in heterogeneously strained areas (compression ⊥[c]). As twinning and prism slip attain their maximum values of the Schmidt factor under nearly equal stress conditions it is postulated that the former of the two deformation modes has the higher shear resistance.  相似文献   

4.
Microfabrics were analysed in calcite mylonites from the rim of the Pelvoux massif (Western Alps, France). WNW-directed emplacement of the internal Penninic units onto the Dauphinois domain produced intense deformation of an Eocene-age nummulitic limestone under lower anchizone metamorphic conditions (slightly below 300 °C). Two types of microfabrics developed primarily by dislocation creep accompanied by dynamic recrystallisation in the absence of twinning. Coaxial kinematics are inferred for samples exhibiting grain shape fabrics and textures with orthorhombic symmetry. Their texture (crystallographic preferred orientation, CPO) is characterised by two c-axis maxima, symmetrically oriented at 15° from the normal to the macroscopic foliation. Non-coaxial deformation is evident in samples with monoclinic shape fabrics and textures characterised by a single oblique c-axis maximum tilted with the sense of shear by about 15°. From the analysis of suitably oriented slip systems for the main texture components under given kinematics it is inferred that the orthorhombic textures, which developed in coaxial kinematics, favour activity of <10–11> and <02–21> slip along the f and r planes, respectively, with minor contributions of basal-<a> slip. In contrast, the monoclinic textures, which developed during simple shear, are most suited for duplex <a> slip along the basal plane. The transition between the dominating slip systems for the orthorhombic and monoclinic microfabrics is interpreted to be due to the effects of dynamic recrystallisation upon texture development. Since oblique c-axis maxima documented in the literature are most often rotated not with but against the shear sense, calcite textures alone should not be used as unequivocal shear sense indicators, but need to be complemented by microstructural criteria such as shape preferred orientations, grain size estimates and amount of twinning.  相似文献   

5.
Dolomite single crystals of six different crystallographic orientations were tested in compression under confining pressure at temperatures of 20 to 800° C. The chosen orientations favoured slip or twinning on particular systems. The deformed crystals were analysed by optical and high voltage transmission electron microscopy to determine activated deformation systems, dislocation behaviour, etc., and to assist in interpreting stress-strain data. It is shown that slip on c≡(0001) and on \(f \equiv (\bar 1012)\) ), and twinning on f between 300 and 600° C, are the principal modes of deformation. At low temperatures there is considerable cataclasis, and shear-fracturing must be counted as a significant deformation mechanism. The effects of climb become apparent at temperatures ?600° C. A pronounced increase in strength with testing temperature shown by some orientations of the crystals is largely associated with c slip, but f twinning also shows similar although weaker tendencies. The yield stress for f slip decreases markedly with temperature. Values of critical resolved shear stress are obtained for c and f slip, and for f twinning. Major and minor slip systems, dislocation and twin configurations generated by deformation under different regimes are documented and illustrated. Some of the characteristics of the deformation systems are attributed to the details of atomic displacements. In particular, the increase in strength with temperature for c slip is explained by friction of CO 3 2? groups during dislocation movement, which is unique for c slip. This friction increases with thermal vibration, expansion and rotation of the CO 3 2? groups.  相似文献   

6.
Experimentally deformed Maryland diabase has been examined using the transmission electron microscope in order to determine the mechanisms of deformation operative over a range of temperatures and pressures and thereby aid in the interpretation of polyphase flow data. Deformation mechanisms within the plagioclase and clinopyroxene of the diabase have been compared to those within monomineralic aggregates of these phases deformed at the same conditions. Both phases deform by microfracturing, mechanical twinning, and intracrystalline slip.Data for the monomineralic aggregates show that plagioclase is stronger than clinopyroxene at <800°C, but weaker at ≥ 800°C, for a pressure of 15 kbar and strain rate of 10?6/sec. Observations of the diabase are consistent with this result: at < 800°C, the plagioclase and pyroxene grains are about equally strained, whereas at ≥ 800°C, almost all of the sample strain is accommodated by the plagioclase, the more continuous phase.  相似文献   

7.
A polycrystalline aggregate of anhydrite was deformed in torsion to a maximum shear strain of 8.1 at 700°C and a maximum shear strain rate of 5᎒-3 s-1. The crystallographic preferred orientation (CPO or texture) was investigated as a function of shear strain/shear strain rate in a radial profile from the centre to the edge of the sample. A deformation texture developed at shear strains of 1.5-2 (corresponding to shear strain rates of 1 to 1.3᎒-3 s-1) and reached a stable position relative to the kinematic frame at a shear strain of 3.7 (2.3᎒-3 s-1). Further shear strain only led to a small increase in texture strength but no change in the orientation relative to the kinematic frame. The CPO is very similar to naturally observed textures and can be explained by the activity of the {001}<010> and {012}<121> slip systems. Although independent mechanical data indicate that a change of mechanism from dislocation- to diffusion-controlled creep occurred at a shear strain of approximately 1.5, the texture does not weaken, but rather increases, in strength with higher shear strains.  相似文献   

8.
Transmission electron microscope (tem) observations of single and multiple twins in calcite and dolomite are presented, and the results are analysed by means of selected area diffraction and trace analysis. Simple twinning in rhodochrosite and kutnahorite is also analysed. It is shown that the ordered carbonates, such as dolomite, have a common twinning plane {01 \(\bar 1\) 2} and this appears to be their only mode of deformation twinning. The carbonates with higher symmetry, such as calcite, have {01 \(\bar 1\) 8} as the primary twinning plane but calcite itself has other twinning mechanisms, of which the most important is illustrated. Crossing and stopping twins are also discussed. It is shown that twinning in calcite, which occurs predominantly at low temperatures, is characterized by the generation of large numbers of glide dislocations.  相似文献   

9.
The effect of Dauphiné twinning on plastic strain in quartz   总被引:1,自引:0,他引:1  
We present an electron backscatter diffraction analysis of five quartz porphyroclasts in a greenschist facies (T = 300–400°C) granitoid protomylonite from the Arolla unit of the NW Alps. Mechanical Dauphiné twinning developed pervasively during the incipient stage of deformation within two porphyroclasts oriented with a negative rhomb plane {z} almost orthogonal to the compression direction (z-twin orientation). Twinning was driven by the anisotropy in the elastic compliance of quartz and resulted in the alignment of the poles of the planes of the more compliant positive rhomb {r} nearly parallel to the compression direction (r-twin orientation). In contrast, we report the lack of twinning in two porphyroclasts already oriented with one of the {r} planes orthogonal to the compression direction. One twinned porphyroclast has been investigated with more detail. It shows the localization of much of the plastic strain into discrete r-twins as a consequence of the higher amount of elastic strain energy stored by r-twins in comparison to z-twins. The presence of Dauphiné twins induced a switch in the dominant active slip systems during plastic deformation, from basal <a> (regions without twinning) to {π} and {π′} <a> (pervasively twinned regions). Dynamic recrystallization is localized along an r-twin and occurred dominantly by progressive subgrain rotation, with a local component of bulging recrystallization. Part of the recrystallized grains underwent rigid-body rotation, approximately about the bulk vorticity axis, which accounts for the development of large misorientation angles. The recrystallized grain size piezometer for quartz yields differential stress of 100 MPa. The comparison of this palaeostress estimate with literature data suggests that mechanical Dauphiné twinning could have a potential use as palaeopiezometer in quartz-bearing rocks.  相似文献   

10.
We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW) to Ft. Ann, New York (SE), including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone) were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains) across the Central Gneiss Belt (CGB; 3 samples), the Central Metasedimentary Belt (CMB; 27 samples), the Central Granulite Terrane (CGT; Adirondack's; 13 samples) and the Ottawan Orogenic Lid (OOL; 11 samples). Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (~1150 Ma; n = 4) document these marbles formed during the Shawinigan (1190–1140 Ma) part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma) twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound), then becomes parallel to the Grenville thrust direction (NW–SE) across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE). Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11) and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8). Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2). The better-developed e1 sets (n = 406) record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146) preserve a margin-parallel (SW–NE) horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV), perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite) in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville-Keweenaw far-field dynamics.  相似文献   

11.
Single crystals of sanidine which were experimentally deformed so as to introduce the (010)[100] slip system were examined by transmission electron microscopy (tem). Dislocation glide is mainly manifested in the samples deformed at 700° C, with a strain rate \(\dot \varepsilon = 1 - 2 \times 10^{ - 6} s^{ - 1} \) . In addition to the expected slip system another more important one, (12 \(\bar 1\) )[101], was found. The dislocations lying in (010) present a glissile dissociation. These observations have been discussed in term of the feldspar structure. Models for glissile dissociation in (010) are proposed: [100]=1/2[100]+1/2[100] or 1/2[101]+1/2[10 \(\bar 1\) ] and [101]=1/2[101]+1/2[101].  相似文献   

12.
Cordierite — (Mg,Fe)2Al4Si5O18 — occurs as porphyroclasts within metapelitic and metavolcanic rocks from the Kemiö-Orijärvi belt, SW Finland. After crystallisation the cordierites have been deformed at temperatures between 550–825° C and pressures of 3–5 kbar. Optical microscopy reveals the following deformation-induced microstructures: a bimodal size distribution between host, 0.3 to 4.0 mm, and recrystallised (new) grains, 0.1 to 0.5 mm; the intracrystalline defect-structures of host grains yield undulatory extinction, subgrains and some twinning. Recrystallised grains are optically strain free. Grain and subgrain boundaries are generally straight and parallel to crystallographic low-index planes. Orientation distribution diagrams for host and recrystallised grains yield similar fabric diagrams, i.e. [010] perpendicular to foliation -S-, [001] and [100] parallel to S and [001] parallel to lineation -L-. The fabric diagrams indicate that [001] (010) is the dominant slip system. Transmission electron microscopy reveals straight free dislocations, glide and climb loops, minor {130} and {110} microtwins, isolated nodal points and dislocation walls. Contrast analyses yield Burgers vector b = [001] being dominant and b = [100] subordinate. Climb loops consist of 〈c〉-dislocations that are dissociated in (001) planes, glide loops are defined by [100] [010] and [001] (100). The cordierite microstructures have been interpreted to be generated by dislocation creep. The dominant recrystallisation mechanism is thought to be subgrain rotation subsequently followed by minor grain or twin-band boundary migration.  相似文献   

13.
This paper deals with the incidence and geometry of lattice bending in calcite of naturally strained marble and possible relations in time to associated {01¯12} twinning, as revealed by microscopic examination with a universal stage. Microscopic technique and graphic treatment of data with a view to identifying the relation in time of bending to twinning, and possible glide mechanisms involved in the bending process are reviewed as a basis for present and subsequent investigation of this general topic.In most instances development of surviving thin e twins postdates bending of the host crystal (such twins everywhere are rationally oriented). Rarely (in contrast with experimental experience) some thin twins are slightly irrational (Le lamellae) and apparently developed in the final stages of bending. Thick twins (a few tens of microns wide) on the other hand rather commonly predate or are synchronous with bending.The geometry of bending (external rotation) — especially for rotation less than 25° —commonly is compatible with models (based on experimental experience) of simple translation in the strained domains. The commonest translation system so identified is on {10¯11}, with sense of shear, where recognizable, either negative or positive. Translation on {02¯21} is relatively rare. Unexpectedly there is rather strong but not conclusive evidence of translation on {0001} parallel to an a axis. This mechanism, hitherto never identified with certainty, is now here documented unequivocally in a crystal of calcite experimentally strained at 300° C, 5 kb.  相似文献   

14.
The change from cubic to tetragonal symmetry in natural leucite, KAlSi2O6, involves two types of twinning, which appear sequentially with decreasing temperature: (1) lamellar, associated with the point group symmetry reduction m3m to 4/mmm; (2) merohedric, associated with the change 4/mmm to 4/m. Twin orientations have been deduced from X-ray precession photos and TEM diffraction patterns and images. These are confirmed by theory, using the concept of spontaneous strain and the symmetry relations between adjacent domains. Lamellar twins have boundaries parallel to {101} of the cubic phase, and are cross-cut by the merohedric twins, which have irregular boundaries with x and y in adjacent domains interchanged. On an electron microscopic scale, the distortion arising from twin intersections is revealed by a curvature of one twin wall adjacent to another, and by needle-shaped domains. The macroscopic orientation of the lamellar twins is related to the lattice parameters and hence the magnitude of the spontaneous strain. This in turn leads to the characterisation of the order parameter for the m3m to 4/mmm transformation.  相似文献   

15.
Focal mechanism and surface slip data are used to investigate whether kinematics are similar at depth and at the surface along an active normal fault in the Gulf of Corinth, Greece. We present a new database of slip data from the lateral termination of the South Alkyonides fault segment (SAFS) and the en échelon stepover between it and an adjacent fault, and use published data on surface slip and focal mechanism data pertaining to slip at depth during the 1981 Alkyonides earthquake sequence. The focal mechanisms exhibit similar fault plane orientations and kinematics to those measured at the surface. Within the stepover, both data sets show that contemporaneous c. N–S and c. E–W extension is being accommodated by c. E–W- and c. N–S-oriented normal faults, and the overall deformation is distributed oblate vertical flattening. The deviation of the surface slip direction from 350° increases with distance from the centre of the SAFS. The deviation of the focal mechanism T-axes from 350° fit well with the surface data, implying that the coseismic slip on the SAFS at depths of 7–10 km exhibits a similar kinematic pattern as that observed at the surface. Our results imply that it is critical to know the along-strike position of data on a fault if either focal mechanisms or surface slip are to be used to infer regional strain and stress trajectories.  相似文献   

16.
Transmission electron microscopy on the iron monosulfide (FeS) varieties from the Suizhou meteorite (Hubei, China) reveals the intergrowth of primary hexagonal 2C troilite and minor monoclinic 4C pyrrhotite (SG: F2/d) phases as nanometer-scale domain microstructure. In addition, anti-phase domain boundaries are found to present in the 2C troilite superstructure with the displacement vector 1/4[001]2C, which is expected to form during the translational symmetry breaking during cooling from higher symmetry, high-temperature modification of the NiAs-type (SG: P63/mmc) structure. Furthermore, 60° rotation twinning about the pseudo-hexagonal c-axis is observed in the 4C pyrrhotite superstructure, which may result from rotation symmetry reduction induced by the ordered arrangements of metal vacancies through solid-state transformation during further cooling. All the above microstructural characteristics are discussed with consideration to the thermal metamorphism history experienced by the Suizhou meteorite.  相似文献   

17.
The optical anomalies, and surface and lamellar textures of a birefringent grossular garnet crystal from the Eden Mills, Belvidere Mountain, Vermont, USA, have been investigated by optical polarizing microscope, electron-probe micro-analyzer, back-scattered electron imaging, infrared spectroscopy, and single-crystal X-ray diffractometer from the standpoint of crystal growth. This grossular shows one-to-one correlation between natural surface features and its internal textures under crossed polarizers. Electron-probe micro-analyzer (EPMA) gave average chemical composition in (110) thin section, of bright lamella {Ca2.97Mn0.06}∑3.03 [Al1.59Fe0.37Ti0.01]∑1.97(Si3.00)∑3.00 (Gros79.5And18.9Sps1.6) and of dark host {Ca2.99Mn 0.06}∑3.05 [Al1.73Fe0.26 Ti0.01]∑2.00(Si2.97OH0.03)∑3.00 (Gros85.4And13Sps1.6). The correspondence of surface features and the internal textures with spiral or pyramidal growth mechanism suggest that the internal textures of the Eden Mills grossular are formed during growth process. The optical vibrational orientations and the growth steps inclination along [001] and \( \left[\overset{-}{1}10\right] \) directions predict monoclinic symmetry. With X-ray diffractometer (XRD) method, pseudocubic parameters are a = 11.839(2) Å, b = 11.855(1) Å, and c = 11.868(2) Å with interaxial angles α = 90.00(1)°, β = 89.99(1)°, and γ = 90.02(2)° that show orthorhombic symmetry of this crystal. Lamellar texture of Al3+-rich host with Fe3+-rich lamella infers cation ordering at octahedral site of the garnet structure. IR data favors the non-cubic orientation of [(OH) 4] at tetrahedral position in this grossular structure.  相似文献   

18.
Crude oils generally contain at least one symmetrical homologous series of porphyrins, which is usually centered at m/e 476 (DPEP) or m/e 478 (etioporphyrin). Simulated geochemical conditions in the present study resulted in decarboxylations and alkylations which ultimately led to the synthesis of homologous porphyrins from a single porphyrin. In several series of closed tube experiments, mesoporphyrin IX dimethylester (MPDME) was mixed with a variety of constituents including benzene, acetic acid, propionic acid, water and clay; the experiments were performed at temperatures between 135°C and 400°C at time intervals up to 80 days. Dealkylation, alkylation, hydrolysis, decarboxylation and metallation products were observed. An unsymmetrical homologous series of porphyrins was produced from MPDME. The dominant mass was m/e 478 (corresponding to a double deoarboxylation). Dealkylation products in multiples of 14 amu below the m/e 478 peak comprised the other members of the series. Cu-MPDME also produced homologous porphyrins. These, however, exhibited symmetry about the dominant members, similar to the symmetry found for the porphyrins of most petroleums and oil shales.  相似文献   

19.
Abstract

The deformation behavior of fine grained limestones from the Monte Sirino area (Lucania region) of the southern Apennines has been analysed by constraining microstructural observations and crystallographic fabrics with data on the metamorphic conditions of deformation. X-ray and infrared analysis of clay minerals, together with illite ‘crystallinity’ data, suggest that the studied rocks underwent very low grade metamorphism in the deep diagenetic zone. The limestones consist of very fine grained (<10 μm) aggregates of micrite. Elliptically-shaped radiolarians, preserved as moulds with coarser (>20 μm) crystalline fillings, provide common strain markers. Optical microstructures and strain analysis indicate heterogeneous intracrystalline strain in the coarser (>50 μm) calcite. On the other hand, SEM and TEM observations, and crystallographic fabrics determined by X-ray texture goniometry, indicate a deformation involving not only intracrystalline slip, but also an important component of grain boundary sliding in the fine grained matrix. The inferred microscopic deformation mechanisms are compared with constitutive flow laws derived from experimental studies. For the maximum inferred temperature of deformation of 250 °C and geologic strain rates of 10?13?10?15 s?1, deformation mechanism maps for calcite suggest twinning and other glide mechanisms to be active in grains larger than about 5?10 μm. Smaller grains would be mostly deformed by grain size sensitive creep mechanisms, which include both diffusion mass transfer processes and grain boundary sliding. Deformation features observed in the study limestones are compatible with the prediction of such temperature-dependent mechanism maps. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

20.
Dislocations in intermediate plagioclase feldspars, which were deformed under granulite facies conditions, have been analysed. The study reveals extensive ductile deformation by intracrystalline slip and by twinning. Six out of the seven possible Burgers vectors were identified: \(b = \left[ {001} \right],\tfrac{1}{2}\left[ {110} \right],\tfrac{1}{2}\left[ {1\bar 10} \right],\left[ {101} \right],\tfrac{1}{2}\left[ {112} \right]and\tfrac{1}{2}\left[ {1\bar 12} \right]\) . Most, perhaps all, dislocations are dissociated by up to 200 Å. The microstructure is dominated by [001] screw dislocations, most of which appear to be dissociated in (010). The dominant slip system appears to be (010) [001]. Large grain-to-grain variations in the density of free dislocations indicate that the plastic strain in individual grains depended upon the Schmid factor for (010) [001]. The microstructure suggests that the rate-controlling step for high-temperature creep of plagioclase is cross-slip of extended [001] screw dislocations. The rheological contrast between feldspar and quartz is partly due to a difference in stacking fault energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号