首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to ?(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates.  相似文献   

2.
In geopotential space, the fundamental geodetic parameter W 0 defines the Gauss–Listing geoid which can be used to best represent the Earth’s mean sea level (MSL) and hence specifies a conventional zero height level to unify vertical datums employed by mapping agencies throughout the world. Further, W 0 cannot be considered invariant as the parameter varies temporally as a direct response to sea level change and mass redistributions. This study determines W 0 and its rate, dW 0/dt, by utilizing altimetric MSL models and an independent mean dynamic topography (MDT) model to define points on the geoid. W 0 and dW 0/dt are estimated by two approaches: (i) by means of a global gravity field model (GGM) and (ii) within normal gravity field space as the geopotential value of the best fitting reference ellipsoid. The study shows that uncertainty in W 0 is mainly influenced by MDT while the choice of methodology, GGM and MSL data coverage are not significant within reason. Our estimate W 0 =?62636854.2 ± 0.2 m2?s?2 at epoch 2005.0 differs by 1.8?m2s?2 from the International Astronomical Union reference value. This study shows that, at a sub-decadal time scale, the time variation dW 0/dt stems mainly from sea level change with negligible effect from gravity field variations. dW 0/dt =?(?2.70 ± 0.03)?×?10?2?m2?s?2?year?1, corresponding to a MSL rise of 2.9?mm?year?1, is evaluated from sea level change based on 16?years of TOPEX and Jason-1 data.  相似文献   

3.
In the past 50 years, the Sahel has experienced significant tree- and land cover changes accelerated by human expansion and prolonged droughts during the 1970s and 1980s. This study uses remote sensing techniques, supplemented by ground-truth data to compare pre-drought woody vegetation and land cover with the situation in 2011. High resolution panchromatic Corona imagery of 1967 and multi-spectral RapidEye imagery of 2011 form the basis of this regional scaled study, which is focused on the Dogon Plateau and the Seno Plain in the Sahel zone of Mali. Object-based feature extraction and classifications are used to analyze the datasets and map land cover and woody vegetation changes over 44 years. Interviews add information about changes in species compositions. Results show a significant increase of cultivated land, a reduction of dense natural vegetation as well as an increase of trees on farmer's fields. Mean woody cover decreased in the plains (−4%) but is stable on the plateau (+1%) although stark spatial discrepancies exist. Species decline and encroachment of degraded land are observed. However, the direction of change is not always negative and a variety of spatial variations are shown. Although the impact of climate is obvious, we demonstrate that anthropogenic activities have been the main drivers of change.  相似文献   

4.
Intercity lighting data are an important resource for studying spatial and temporal patterns in regional urban development as an indicator of the intensity of urban social and economic activity. Understanding the evolutionary characteristics of the spatial pattern of regional economic development can support decision-making in regional economic coordination and sustainable development strategies. Based on a long time series of nighttime lighting data from 1992 to 2020, this study used the Theil index, Markoff transfer matrix, spatial autocorrelation, and spatial regression to analyze spatiotemporal evolutionary characteristics and drivers of urban economic development in China. The study found that from 1992 to 2020, China's economic development hot spots have been concentrated in highly developed urban agglomerations namely the Beijing–Tianjin–Hebei region, Shandong Peninsula, Yangtze River Delta, and Pearl River Delta. Cold spots were mainly concentrated in the central-west and southwest of the country. The economic growth rate shows an opposite spatial pattern, which demonstrates the effectiveness of the national coordinated development strategy for regions. The Theil index for urban economic development in China shows an overall downward trend, and the overall economic disparity is mainly due to the relatively low economic development of Tibet, Xinjiang, Gansu, and other western provinces. Therefore, regional economic development remains significantly uneven. In China, the economic type of cities is relatively stable, and the probability of leapfrogging types is low; however, the level of cities with high resource dependence or a single economic structure easily downgrades. The level of economic development and the related socioeconomic factors of neighboring cities influence an obvious spatial spillover effect in the development of urban economies in China. The pattern of China's urban economic development is mainly affected by innovation capacity, financial support, capital investment, transportation infrastructure, and industrial structure.  相似文献   

5.
This report was presented by the author, as Editor-in-Chief (EIC) of PRS, to the General Assembly of the Delegates of the ISPRS Members during the 19th ISPRS Congress, Amsterdam, 16–23 July 2000. Since it summarises in quite some detail many new developments since the last Congress that are of interest not only to ISPRS in general, but also to authors and readers, a slightly modified version of this report is published here.  相似文献   

6.
Land cover and land use change (LCLUC) is a global phenomenon, and LCLUC in urbanizing regions has substantial impacts on humans and their environments. In this paper, a semi-automatic approach to identifying the type and starting time of urbanization was developed and tested based on dense time series of Vegetation-Impervious-Soil (V-I-S) maps derived from Landsat surface reflectance imagery. The accuracy of modeled V-I-S fractions and the estimated time of initial change in impervious cover were assessed. North Taiwan, one of the regions of the island of Taiwan that experienced the greatest urban LCLUC, was chosen as a test area, and the study period is 1990 to 2015, a period of substantial urbanization. In total, 295 dates of Landsat imagery were used to create 295 V-I-S fraction maps that were used to construct fractional cover time series for each pixel. Root Mean Square Error (RMSE)s for the modeled Vegetation, Impervious, and Soil were 25 %, 22 %, 24 % respectively. The time of Urban Expansion is estimated by logistic regression applied to Impervious cover time series, while the time of change for Urban Renewal is determined by the period of brief Soil exposure. The identified location and estimated time for newly urbanized lands were generally accurate, with 80% of Urban Expansion estimated within ±2.4 years. However, the accuracy of identified Urban Renewal was relatively low. Our approach to identifying Urban Expansion with dense time series of Landsat imagery is shown to be reliable, while Urban Renewal identification is not.  相似文献   

7.
Study of hyper-spectral behaviour of snow is important to interpret, analyse and validate optical remote sensing observations. To map and understand response of snow-mixed pixels in RS data, field experiments were conducted for linear mixing of external materials (i.e. Vegetation, Soil) with snow, using spectral-radiometer (350–2500 nm). Further, systematic non-linear mixing of snow contaminants (soil, coal, ash) in terms of size and concentration of contaminants is analysed to imitate and understand spectral response of actual field scenarios. Sensitivity of band indices along with absorption peak characteristics provide clues to discriminate the type of contaminants. SWIR region is found to be useful for discriminating size of external contaminants in snow e.g. Avalanche deposited snow from light contaminated forms. Present research provide inputs for mapping snow-mixed pixels in medium/coarse resolution remote sensing RS data (in terms of linear mixing) and suitable wavelength selections for identification and discriminating type/size of snow contaminants (in terms of non-linear mixing).  相似文献   

8.
Abstract

This paper presents the first measurement of multi-decadal thickness and volume changes (1969–2000) of the Dongkemadi Ice Field (DIF) in the Tanggula Mountains, central Qinghai-Tibetan Plateau, China, using multi-source remote sensing data. These include the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) acquired in February, 2000, a DEM generated by digitising analogue topographic maps from 1969, and Landsat ETM+ imagery from 2000. Digital glacier outlines and GIS-based processing were used to calculate an elevation difference map to evaluate the relative elevation error of these two DEMs over ice-free areas. This method was also used to identify regions of glacier elevation thinning and thickening corresponding to glacier mass loss and gain. Analysis of 67,520 points on flat grass and rock terrain surrounding the DIF, with a slope less than 25°, showed a mean elevation difference of –0.90 m and a standard deviation of 5.58 m. A thickness change error within ±6 m was estimated. Between 1969 and 2000, 76.51% of the whole DIF area appeared to be thinning while 23.49% showed thickening. The average glacier surface thinning was –12.58 m with a standard deviation of 18.29 m and the estimated volume loss was 1.17 km3. The standard deviation of volume change was 0.0006 km3 over the DIF. A thinning rate up to 0.41±0.194 m a?1 or 0.038 km3 a?1 for the volume loss was observed for the whole ice field, which seems to be evidence for the ongoing retreat of glaciers on the Qinghai-Tibetan Plateau. It was found that the spatial thickness change pattern derived from the remote sensing method was consistent with the thickness change results of the Small Dongkemadi Glacier (SDG) from field measurements. The estimated error of the annual thickness change rate was on the order of 5%. The relationship between elevation change and absolute glacier elevation over typical glaciers was also analysed, showing considerable variability. These changes have possibly resulted from increased temperature and decreased precipitation in this region.  相似文献   

9.
The southern Yucatán (SY) has been recognized as a hotspot of biodiversity with great risk of deforestation. Land change analysis, based on classified Landsat TM and ETM?+?satellite imagery (1990, 2000 and 2006), was used to estimate the annual deforestation rates of 141 land management units of the SY, and spatial patterns of forest fragmentation around and within the Calakmul Biosphere Reserve (CBR), which comprises approximately one-third of the region. Results indicate a decrease in annual deforestation rates over 1990–2006, from 0.15% year?1 to 0.06% year?1, but with significant sub-regional variations in the quantity and rate of forest loss. Despite a decline in deforestation during this period, there was considerable fragmentation both inside and outside the CBR. While population pressures and the expansion of pasture have caused deforestation across the region, agricultural intensification, diversified income strategies and reserve conservation may have contributed to reduced forest loss during the study period.  相似文献   

10.
11.
We studied changes in area and species composition of six indigenous forest fragments in the Taita Hills, Kenya using 1955 and 1995 aerial photography with 2004 airborne digital camera mosaics. The study area is part of Eastern Arc Mountains, a global biodiversity hot spot that boasts an outstanding diversity of flora and fauna and a high level of endemism. While a total of 260 ha (50%) of indigenous tropical cloud forest was lost to agriculture and bushland between 1955 and 2004, large-scale planting of exotic pines, eucalyptus, grevillea, black wattle and cypress on barren land during the same period resulted in a balanced total forest area. In the Taita Hills, like in other Afrotropical forests, indigenous forest loss may adversely affect ecosystem services.  相似文献   

12.
This paper describes the application of high‐resolution SPOT data for the structural and thematic mapping of shallow coral reefs. Results are presented as structural and thematic maps of the main reef environment types. Different substrate themes including soft bottom, coral débris, coral rubble, and living coral have been identified. The separation of various living coral themes, as measured by differences in areal coral density, has also been achieved.  相似文献   

13.
Monitoring the evolution of polar glaciers, ice caps and ice streams is of utmost importance because they constitute a good indicator of global climate change and contribute significantly to ongoing sea level rise. Accurate topographic surveys are particularly relevant as they reflect the geometric evolution of ice masses. Unfortunately, the precision and/or spatial coverage of current satellite missions (radar altimetry, ICESat) or field surveys are generally insufficient. Improving our knowledge of the topography of Polar Regions is the goal of the SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies) international polar year (IPY) project. SPIRIT will allow (1) the acquisition of a large archive of SPOT 5 stereoscopic images covering most polar ice masses and, (2) the delivery of digital terrain models (DTM) to the scientific community.Here, we present the architecture of this project and the coverage achieved over northern and southern polar areas during the first year of IPY (July 2007 to April 2008). We also provide the first accuracy assessments of the SPIRIT DTMs. Over Jakobshavn Isbrae (West Greenland), SPIRIT elevations are within ±6 m of ICESat elevations for 90% of the data. Some comparisons with ICESat profiles over Devon ice cap (Canada), St Elias Mountains (Alaska) and west Svalbard confirm the good overall quality of the SPIRIT DTMs although large errors are observed in the flat accumulation area of Devon ice cap. We then demonstrate the potential of SPIRIT DTMs for mapping glacier elevation changes. The comparison of summer-2007 SPIRIT DTMs with October-2003 ICESat profiles shows that the thinning of Jakobshavn Isbrae (by 30–40 m in 4 years) is restricted to the fast glacier trunk. The thinning of the coastal part of the ice stream (by over 100 m) and the retreat of its calving front (by up to 10 km) are clearly depicted by comparing the SPIRIT DTM to an ASTER April-2003 DTM.  相似文献   

14.
15.
This research focuses on the recent variations in the annual snowline and the total glaciated area of the Nevado Coropuna in the Cordillera Ampato, Peru. Maximum snowline altitude towards the end of dry season is taken as a representative of the equilibrium line altitude of the year, which is an indirect measurement of the annual mass balance. We used Landsat and IRS LISS3 images during the last 30 years due to its better temporal coverage of the study site. It is found that there was a decrease of 26.92% of the glaciated area during 1986–2014. We calculated the anomalies in precipitation and temperature in this region and also tried to correlate the changes in glacier parameters with the combined influence of El Niño – Southern Oscillation (ENSO) and pacific decadal oscillation (PDO). It is concluded that the snowline of Nevado Coropuna has been fluctuated during ENSO, and maximum fluctuations were observed when ENSO and PDO were in phase.  相似文献   

16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号